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Abstract. In this paper, we introduce the notions of dualizing complexes and balanced

dualizing complexes over Z-algebras. We prove that a noetherian connected Z-algebra A

admits a balanced dualizing complex if and only if A satisfies Artin–Zhang’s χ-condition,

has finite local cohomology dimension, and possesses symmetric derived torsion as a

bigraded A-A-bimodule. As an application of our study of dualizing complexes, we show

that any smooth noncommutative projective scheme associated to a Z-algebra with a

balanced dualizing complex admits a Serre functor.
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1. Introduction

1.1. Background and motivation. The notion of a dualizing complex first appeared in

[Har66] in the context of Grothendieck duality theory for schemes. Motivated by [Har66],

Yekutieli studied dualizing complexes over noncommutative graded algebras in [Yek92]
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to study noncommutative local cohomology. The lack of flexibility in noncommutative

algebras, such as the impossibility of freely taking localizations as in the commutative

case, prevents us from proving a local duality theorem for general dualizing complexes. To

address this issue, he introduced the notion of a balanced dualizing complex. A balanced

dualizing complex has particularly favorable properties, including the fact that it induces

a local duality theorem [Yek92, Theorem 4.18], and it has found important applications,

such as Serre duality in noncommutative projective geometry (see, for example, [YZ97],

[DNVB04]). Therefore, the question of when a noncommutative graded algebra admits a

balanced dualizing complex is of considerable importance. In [VdB97], M. Van den Bergh

showed that a noetherian connected graded algebra admits a balanced dualizing complex if

and only if it has finite local cohomology dimension and satisfies Artin-Zhang’s χ-condition

([AZ94, Section 3]). Nowadays, these conditions serve as fundamental guidelines in the

study of noncommutative algebras and have become indispensable in determining which

classes of algebras to study. Since then, further developments and generalizations have

been made; see, for instance, [Yek99], [YZ99], [WZ01], [CWZ02], and, most recently,

[BLS25], among others.

A Z-algebra over a field k is a k-linear category C whose objects are indexed by Z.
Actually, if we identify the set of objects of C with Z, then A :“

À

i,jPZAij with Aij :“

HomCpj, iq has a natural structure of a k-algebra without unit. In this way, we regard a

Z-algebra as a bigraded k-algebra without unit and can define the category GrpAq of right

graded modules over a Z-algebra (about basic notions, see Section 2).

We can think of a Z-algebra as a generalization of a graded k-algebra as follows. Let

B be a graded k-algebra. Then, we can define a Z-algebra B̄ by B̄ij :“ Bj´i for all

i, j P Z. Moreover, we have the equivalence GrpBq – GrpB̄q of categories, where GrpBq

is the category of graded right B-modules (for example, see [Sie11, Section 2]). So, we

naturally expect that the module theory over a Z-algebra will develop in a way similar to

the theory over a graded k-algebra. The aim of this paper is to advance this philosophy

in the direction of dualizing complexes.

1.2. Results. Let A be a noetherian connected Z-algebra over a field k. In this paper,

we define the notions of a dualizing complex and a balanced dualizing complex over A,

generalizing the definitions in [Yek92]. A bounded complex RA of bigraded A-A-bimodules

is called a dualizing complex over A if it satisfies the following conditions:

(1) RA has finite injective dimension both as a complex of graded right A-modules

and as a complex of graded left A-modules,

(2) for each i, j, the restrictions

ejH
ipRAq :“

à

lPZ
H ipRAqjl, H ipRAqej :“

à

lPZ
H ipRAqlj

of the cohomology bimodule H ipRAq are finitely generated as graded right and left

A-modules, respectively,

(3) the natural contravariant functors RHomAp´, RAq and RHomAopp´, RAq induce

equivalences between the bounded derived categories DbpgrpAqq and DbpgrpAopqq

of finitely generated graded right and left A-modules, respectively.

Moreover, a dualizing complex RA over A is called balanced if

RΓmApRAq – RΓmAop pRAq – A1 in DpGrpA´Aqq,
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where A1 denotes the Matlis dual of A, and ΓmA and ΓmAop denote the right and left

torsion functors, respectively (see Definition 3.2). For further details on the definition of

(balanced) dualizing complexes, see Section 4.1.

To state our first main result, we introduce the following notions. We say that A satisfies

χ-condition (see Definition 3.26) if ExtiApK,Mq and ExtiAoppK,Nq are finite k-modules

for all i P N and all finitely generated graded right A-modules M and left A-modules N ,

respectively, where K “ A{Aě1. We say that A has finite local cohomology dimension

if there exists d P N such that RiΓmApMq “ 0 and RiΓmAop pNq “ 0 for all i ą d, for

all graded right A-modules M and all graded left A-modules N . Finally, viewing A as

a bigraded A–A-bimodule, we say that it has symmetric derived torsion if there exists a

natural isomorphism

RΓmApAq – RΓmAop pAq in DpGrpA´Aqq

(see Definition 3.24).

The first main result of this paper is the following theorem, which is a generalization of

the result of [VdB97] to Z-algebras.

Theorem 1.1 (= Theorem 4.15). Let A be a noetherian connected Z-algebra.
Then, A has a balanced dualizing complex if and only if A satisfies χ-condition, has

finite local cohomological dimension and has symmetric derived torsion as a bigraded A-

A-bimodule.

In the theory of noncommutative graded algebras, symmetric derived torsion follows

from χ-condition. For Z-algebras, however, the same method cannot be applied, since

an A-A-bimodule M is naturally Z2-graded, whereas a bimodule over a graded algebra is

Z-graded. At present, it seems that the existence of symmetric derived torsion does not de-

pend on χ-condition for Z-algebras (see also Remark 3.30). Nevertheless, if A is r-periodic

for some r, then χ-condition does imply symmetric derived torsion (see Proposition 3.31).

We give a class of Z-algebras satisfying the conditions in Theorem 1.1, which may be

regarded as a Z-algebra analogue of AS-Gorenstein algebras, inspired by [MN25, Definition

4.15] (in detail, see Definition 4.16, Proposition 4.17). We also check that a noetherian

connected graded algebra B has a balanced dualizing complex in the sense of [Yek92,

Definition 3.3 and 4.1] if and only if the associated Z-algebra B̄ has a balanced dualizing

complex (see Proposition 4.19). In this case, the dualizing complex RB̄ is isomorphic to
ĎRB.

As an application of our study of dualizing complexes, we prove that a smooth non-

commutative projective scheme associated to a Z-algebra has a Serre functor. Let A be

a noetherian connected Z-algebra. We denote by grpAq the category of finitely generated

graded right A-modules and by torpAq its full subcategory of torsion modules. Since torpAq

is a Serre subcategory of grpAq, we can form the quotient category

qgrpAq :“ grpAq{ torpAq.

Denote the natural projection functor by πA : grpAq Ñ qgrpAq. Then, we have a right

adjoint functor ωA : qgrpAq Ñ grpAq of πA. We call qgrpAq the noncommutative projective

scheme associated to A (Definition 5.1). We say that qgrpAq has finite global dimension

(Definition 5.3) if there exists d P N such that

ExtiqgrpAqpX,Y q “ 0 for all i ą d and all X,Y P qgrpAq.
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A Serre functor of the bounded derived category DbpqgrpAqq is an autoequivalence

SDbpqgrpAqq : D
bpqgrpAqq Ñ DbpqgrpAqq such that there exists a natural isomorphism

HomDbpqgrpAqqpX,Y q – HomDbpqgrpAqqpY,SDbpqgrpAqqpXqq1

for all X,Y P DbpqgrpAqq, where p´q1 denotes the k-dual (see Definition 5.2).

The second main result of this paper is the following theorem.

Theorem 1.2 (= Theorem 5.8). Let A be a noetherian connected Z-algebra. We assume

that A has a balanced dualizing complex RA and qgrpAq has finite global dimension.

Then, the functor πApRωAp´q bL
ARAqr´1s is a Serre functor of DbpqgrpAqq.

Furthermore, as in the case of graded algebras studied in [Yek20] and [WZ01], we develop

the theory of homological algebra over Z-algebras in the more general unbounded setting,

and also establish the fundamental theory of local cohomology. In particular, for local

duality, which was proved under restricted assumptions in [MN21], we provide a proof in

full generality.

1.3. Outline. In Section 2, we review and organize basic notions from the theory of Z-
algebras and establish some further tools to study their module categories. In Section 3,

we develop a theory of local cohomology for connected Z-algebras. We also provide a

characterization of χ-condition in terms of local cohomology. In Section 4, we define and

study (balanced) dualizing complexes over noetherian connected Z-algebras, and we prove

Theorem 1.1. In Section 5, we apply Theorem 1.1 to noncommutative projective geometry

and prove Theorem 1.2.

1.4. Acknowledgements. This work was supported by JSPS KAKENHI Grant Number

24K22841.

2. Z-algebras

Let k be a field and assume that N contains 0 throughout this paper.

In this section, we recall and organize basic notions from the theory of Z-algebras
([VdB11], [MN21], [MN24], [MN25], [Sie11], [Pol05] and so on) and develop some theory

to study their module categories.

2.1. Basic notions.

Definition 2.1. A Z-algebra is a k-algebra (without unit) together with a k-vector space

decompostion A “
À

i,jPZAi,j such that the multiplication has the property AijAjk Ă Aik
and AijAkl “ 0 if j ‰ k. We require that each subalgebra Aii has a unit ei,A (called a

local unit) that acts as a right identity on Aji and a left identity on Aij for all j.

If A is clear from the context, we simply write ei instead of ei,A. Let A,B be Z-algebras.
A Z-algebra homomorphism φ : A Ñ B is a k-algebra homomorphism φ : A Ñ B such

that φpAijq Ă Bij and ϕpei,Aq “ ei,B for all i, j P Z. A is called connected if Aij “ 0 for

all i ą j and Aii “ k for all i. A is called locally finite if Aij is a finite k-module for all

i, j. We define a connected Z-algebra K by

Kij :“

#

k if i “ j,

0 otherwise.

We also define the opposite Z-algebra Aop of A by

Aop
ij :“ Aji for all i, j P Z
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with the multiplication defined as a ¨ b :“ ba P Aop
ik for all a P Aop

ij , b P Aop
jk .

Let A be a Z-algebra. A graded right A-module is a right A-module M together with a

decomposition M “
À

iPZMi such that MiAij Ă Mj for all i, j P Z, ei acts as the identity

on Mi for all i P Z and MiAjk “ 0 if i ‰ j. The homomorphism of graded right A-

modules φ :M Ñ N is a homomorphism of right A-modules such that φpMiq Ă Ni for all

i P Z. A graded left A-module and a homomorphism of graded left A-modules are defined

similarly. We denote the category of graded right A-modules by GrpAq. The category of

graded left A-modules is naturally equivalent to the category GrpAopq of graded right Aop-

modules ([MN21, Proposition 2.2]). So, we often identify the category GrpAopq with the

category of left graded A-modules. We write HomAp´,´q for HomGrpAqp´,´q. In fact,

the category of unitary ungraded right A-modules is equivalent to the category GrpAq

([MN25, Lemma 2.11], [Sie11], [VdB11]). Here, an ungraded right A-module M is called

unitary if MA “ M . So, the notation HomAp´,´q makes sense. In addition, for any two

complexes M,N in GrpAq, we define the hom-complex Hom‚

ApM,Nq by

Hom‚

ApM,Nq :“
à

nPZ

ź

pPZ
HomApMp, Np`nq,

dn “
ź

pPZ
pdp´1
M ` p´1qn`1dp`n

N q.

For simplicity, we often use the same notation as HomAp´,´q if the context is clear.

Let A,B be Z-algebras. A bigraded A-B-bimodule is an A-B-bimoduleM together with

a decompositionM “
À

i,jPZMij such that ei,AM “
À

kPZMik is a graded right B-module

and Mej,B “
À

kPZMkj is a graded left A-module for all i, j P Z. If A is connected, we

define Aěn :“
À

j´iěnAij . A and Aěn are naturally bigraded A-A-bimodules for each

n P N. We often write mA instead of Aě1. For a graded right A-moduleM and a graded left

B-module N , we define M bkN as a bigraded A-B-bimodule by pM bkNqij :“ MibkNj .

A homomorphism of bigraded A-B-bimodules φ : M Ñ N is a homomorphism of A-B-

bimodules such that φpMijq Ă Nij for all i, j P Z. The category of bigraded A-B-bimodules

is denoted by GrpA´Bq. We write HomA´Bp´,´q for HomGrpA´Bqp´,´q. We also define

the hom-complex Hom‚

A´BpM,Nq for complexes of bigraded A-B-bimodules M,N in the

same way as above. We often use the same notation as HomA´Bp´,´q if the context

is clear. It is well-known that GrpAq and GrpA ´ Bq are Grothendieck categories (see

[VdB11], [MN25]).

We define the natural restriction functors

ARes : GrpA´Bq Ñ GrpAopq, M ÞÑ
à

iPZ
Mei,B

and

ResB : GrpA´Bq Ñ GrpBq, M ÞÑ
à

iPZ
ei,AM.

We can also define additional restriction functors AResi, ResiB by

AResi : GrpA´Bq Ñ GrpAopq, M ÞÑ Mei,B

and

ResiB : GrpA´Bq Ñ GrpBq, M ÞÑ ei,AM.

Let A be a Z-algebra. We define a graded right A-module Pi,A for each i P Z by

Pi,A :“ eiA. We define a graded left A-module Qi,A for each i P Z by Qi,A :“ Aei. If A is

connected, we also define Si,A :“ eiAei “ Aii for each i P Z, which is naturally a graded
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right and left A-module. If A is clear from the context, we simply write Pi, Qi and Si
instead of Pi,A, Qi,A and Si,A. Note that tPiui is a set of projective generators in GrpAq

and tQiui is a set of projective generators in GrpAopq. If A is connected, tSiui is the set of

simple objects in GrpAq and GrpAopq. Moreover, tAei,A bk ej,BBui,j is a set of projective

generators in GrpA´Bq ([MN21, Lemma 2.3]).

We define Lr,iA´B : GrpBq Ñ GrpA´Bq and Ll,iA´B : GrpAopq Ñ GrpA´Bq by

Lr,iA´BpMq :“ Aei,A bkM, Ll,iA´BpMq :“ M bk ei,BB.

We also define Rr,iA´B : GrpBq Ñ GrpA´Bq and Rl,iA´B : GrpAopq Ñ GrpA´Bq by

Rr,iA´BpMq “
à

m,nPZ
Rr,iA´BpMqm,n :“

à

m,nPZ
HomkpAi,m,Mnq,

Rl,iA´BpMq “
à

m,nPZ
Rl,iA´BpMqm,n :“

à

m,nPZ
HomkpBn,i,Mmq.

Lemma 2.2. Let A,B be Z-algebras.
(1) Ll,iA´B is a left adjoint to AResi and Lr,iA´B is a left adjoint to ResiB.

(2) Rl,iA´B is a right adjoint to AResi and Rr,iA´B is a right adjoint to ResiB.

(3) If M is a projective (resp. injective) bigraded A-B-bimodule, then AResipMq is

projective (resp. injective) in GrpAopq and ResiBpMq is projective (resp. injective)

in GrpBq.

Proof. Item 1 is proved in the proof of [MN21, Lemma 2.3].

Item 2 follows from the following isomorphisms:

HomAoppPei,Mq – HomA´BpP,Rl,iA´BpMqq

f ÞÑ ppmn ÞÑ pbni ÞÑ fppmnbniqqq,

pgppmiqpei,Bq Ð[ pmiq Ð[ g,

where P P GrpA´Bq, M P GrpAopq, pmn P Pmn and bni P Bni.

When M is an injective bigraded A-B-bimodule, item 3 is [MN21, Lemma 2.3] (cf.

[Stacks, Lemma 12.29.1]). WhenM is a projective bigraded A-B-bimodule, item 3 follows

from the fact that M P GrpAopq (resp. GrpBq) is projective if and only if M is a direct

summand of a direct sum of objects of the form Aei,A (resp. ei,BB). □

For a graded right A-module M , we define the Matlis dual of M by

M 1 :“
à

iPZ
M 1
i ,

where M 1
i :“ HomkpMi, kq is the k-linear dual of Mi. M 1 is naturally a graded left

A-module via afpmq :“ fpmaq for f P pM 1qi “ M 1
i , m P Mj , and a P Aji. For a

bigraded A-B-bimodule M , we define the Matlis dual M 1 of M by M 1 :“
À

i,jPZM
1
ji,

where M 1
ij :“ HomkpMij , kq is the k-linear dual of Mij . M

1 is naturally a bigraded B-A-

bimodule.

For a Z-graded k-module M “
À

iPZMi, we define the shift Mpnq of M for each n P Z
by Mpnqi :“ Mn`i. For a Z2-graded k-module M “

À

i,jPZMij , we define the shift

Mpn,mq of M for each n,m P Z by Mpn,mqi,j :“ Mn`i,m`j . Then, a shift Apn, nq of

a Z-algebra A is also a Z-algebra ([MN25, Lemma 2.14]). If M P GrpAq, then the shift

Mpnq is naturally a graded right Apn, nq-module, which is not a graded right A-module

in general.
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For Z-algebras A,B and C, a homomorphism of Z-algebras φ : A Ñ B andM P GrpBq,

we define a twist Mφ P GrpAq of M by Mφ :“ M as a graded k-module with the action

defined by ma :“ mφpaq for all m P M,a P A. For another Z-algebra D, a homomorphism

ψ : C Ñ D and M P GrpD ´ Bq, we define a twist ψMφ P GrpC ´ Aq by ψMφ :“ M as a

bigraded k-module with the action defined by cma :“ ψpcqmφpaq for all m P M,a P A, c P

C. When C “ D and ψ “ IdC , then we simply write Mφ.

If A is isomorphic to a shift Apn, nq for some n P Z, then we say that A is n-periodic.

If A is n-periodic and φ : A Ñ Apn, nq is an isomorphism of Z-algebras, then we have the

following autoequivalence of the category GrpAq ([MN25, Section 2.5]):

GrpAq
–
ÝÑ GrpAq, M ÞÑ Mpnqφ,

GrpB ´Aq
–
ÝÑ GrpB ´Aq, M ÞÑ Mp0, nqφ,

GrpA´Aq
–
ÝÑ GrpA´Aq, M ÞÑ φMpn, nqφ.

In addition, M P GrpA´Aq is called n-periodic if M – φMpn, nqφ for some n P Z and an

isomorphism φ : A Ñ Apn, nq.

Let A be a Z-graded algebra, as in Section 1.1, we can define the associated Z-algebra
Ā by Āij :“ Aj´i for all i, j P Z. Then, Ā is 1-periodic.

Lemma 2.3 ([Sie11, Section 2], [Pol05, Section 1], [MN25, Lemma 2.17]). Let A be a

Z-graded algebra. Then, we have the following functors

GrpAq
–
ÝÑ GrpĀq, M ÞÑ M̄ “

à

iPZ
M̄i :“

à

iPZ
Mi,

GrpAopq
–
ÝÑ GrpĀopq, M ÞÑ M̄ “

à

iPZ
M̄i :“

à

iPZ
M´i,

GrpA´Bq Ñ GrpĀ´ B̄q, M ÞÑ M̄ “
à

i,jPZ
M̄i,j :“

à

i,jPZ
Mj´i,

where B is another Z-graded algebra, GrpAq,GrpAopq and GrpA ´ Bq are the categories

of graded right A-modules, graded left A-modules and graded A-B-bimodules, respectively.

Note that although the functors GrpAq Ñ GrpĀq and GrpAopq Ñ GrpĀopq are equiva-

lences, the functor GrpA´Bq Ñ GrpĀ´ B̄q is not an equivalence in general.

2.2. Module categories and derived categories. Let A,B and C be Z-algebras. For
a bigraded B-A-bimodule M and a graded right A-module N , we define a graded right

B-module HomApM,Nq called an internal Hom module by

HomApM,Nq “
à

iPZ
HomApM,Nqi :“

à

iPZ
HomApeiM,Nq,

where its module structure is given by pfbqpmq :“ fpbmq for f P HomApM,Nqi, b P

Bij ,m P ejM . For a graded right A-module M and a bigraded B-A-bimodule N , we

define a graded left B-module HomApM,Nq by

HomApM,Nq “
à

iPZ
HomApM,Nqi :“

à

iPZ
HomApM, eiNq,

where its module structure is given by pbfqpmq :“ bfpmq for f P HomApN,Mqi, b P

Bji,m P M . If M is a bigraded B-A-bimodule and N is a bigraded C-A-bimodule,

we define a bigraded C-B-bimodule HomApM,Nq by

HomApM,Nq “
à

i,jPZ
HomApM,Nqi,j :“

à

i,jPZ
HomApejM, eiNq.
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We also define internal Hom-complexes for complexes of modules in the same way. But,

we often use the same notation as the internal Hom modules.

Remark 2.4. If M is an object in GrpA´Bq, then

HomKpM,Kq – M 1

as objects in GrpB ´Aq.

Let M be a graded right A-module and N be a graded left A-module. Then, we define

the tensor product M bA N by

M bA N “ Cok

˜

à

i,j

Mi bAii Aij bAjj Nj
ψ
ÝÑ

à

kPZ
Mk bAkk

Nk

¸

,

ψpmb ab nq :“ mb an´mab n.

For M a graded right A-module and N a bigraded A-B-bimodule, we define a graded

right B-module M bA N by

M bAN :“
à

iPZ
M bA Nei.

For M a bigraded B-A-bimodule and N a graded left A-module, we define a graded left

B-module M bA N by

M bAN :“
à

iPZ
eiM bA N.

For M a bigraded B-A-bimodule and N a bigraded A-C-bimodule, we define a bigraded

B-C-bimodule M bA N by

M bAN :“
à

i,jPZ
eiM bA Nej .

The following proposition is basic but important.

Proposition 2.5 ([MN21, Section 4 and 5], [MN25, Lemma 2.4]). Let A,B be Z-algebras.
Then, the following hold:

(1) For any M in GrpAq, M bAA – M so that pM bAAqi – Mi for all i P Z.
(2) For any N in GrpAopq, AbAN – N so that pAbANqi – Ni for all i P Z.
(3) For any M in GrpAq, any N in GrpBq and any L in GrpA´Bq, we have

HomBpM bAL,Nq – HomApM,HomBpL,Nqq.

Let C be an abelian category. Then, we denote by KpCq the homotopy category of

complexes in C. We denote by K`pCq, K´pCq and KbpCq the full subcategories of KpCq

consisting of complexes with bounded below, bounded above and bounded, respectively.

We denote by DpCq the derived category of C. We denote by D`pCq, D´pCq and DbpCq the

full subcategories of DpCq consisting of complexes with bounded below, bounded above

and bounded, respectively.

To we consider the derived functors of the above functors, we define the notions of

K-projective and K-injective objects in GrpAq and GrpA´Bq.

Definition 2.6. Let A,B be Z-algebras.
(1) An object P P DpGrpA ´ Bqq (resp. DpGrpBqq) is called K-projective if for

any acyclic complex M P DpGrpA ´ Bqq (resp. DpGrpBqq), the Hom complex

HomA´BpP,Mq (resp. HomBpP,Mq) is acyclic.
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(2) An object I P DpGrpA ´ Bqq (resp. DpGrpBqq) is called K-injective if for

any acyclic complex M P DpGrpA ´ Bqq (resp. DpGrpBqq), the Hom complex

HomA´BpM, Iq (resp. HomBpM, Iq) is acyclic.

(3) An object F P DpGrpBqq is called K-flat if for any acyclic complex M P

DpGrpBopqq, the tensor product F bB M is acyclic.

Example 2.7. A bounded above complex of projective objects in GrpBq (resp. GrpA´Bq)

is K-projective. A bounded below complex of injective objects in GrpBq (resp. GrpA´Bq)

is K-injective.

Proposition 2.8. Let A,B be Z-algebras. Then,

(1) If P is a K-projective object in DpGrpA´Bqq, then AResipP q (resp. ResiBpP q) is

a K-projective object in DpGrpAopqq (resp. DpGrpBqq) for all i P Z.
(2) If I is a K-injective object in DpGrpA ´ Bqq, then AResipIq (resp. ResiBpIq) is a

K-injective object in DpGrpAopqq (resp. DpGrpBqq) for all i P Z.
(3) If P is a K-projective object in DpGrpBqq, then P is K-flat in DpGrpBqq.

Proof. (1) From Lemma 2.2, for any acyclic complex M P DpGrpAopqq, we have

Hom‚

ApResiApP q,Mq – Hom‚

A´BpP,Rl,iA´BpMqq

The statement follows from this isomorphism and the definition of K-projective objects.

When we prove that ResiBpP q is K-projective, we can show the statement in the same

way.

(2) We can show the statement by using the adjoint property in Lemma 2.2

Hom‚

A´BpLl,iA´Bp´q, Iq – Hom‚

Aopp´,AResipIqq

and the definition of K-injective objects in the same way as (1).

(3) If M is an acyclic complex in DpGrpBopqq, then we have

Hom‚

BpP,HomKpLr,iB´KpMq, eiKqq – Hom‚

KpP bBL
r,i
B´KpMq, eiKq

by Proposition 2.5. Here, for any i P Z,
(a) Hom‚

KpP bBL
r,i
B´KpMq, eiKq is acyclic if and only if P bB M is acyclic,

(b) if M is acyclic then, HomKpLr,iB´KpMq, eiKq is acyclic.

Thus, we have that P is K-flat in DpGrpBqq (see also [Yek20, Proposition 10.3.4]). □

Proposition 2.9. Let A,B be Z-algebras. Then,

(1) For any object M in DpGrpA´Bqq (resp. DpGrpBqq), there exists a K-projective

object P in DpGrpA´Bqq (resp. DpGrpBqq) which quasi-isomorphic to M .

(2) For any object M in DpGrpA ´ Bqq (resp. DpGrpBqq), there exists a K-injective

object I in DpGrpA´Bqq (resp. DpGrpBqq) which quasi-isomorphic to M .

Proof. Because GrpAq, GrpAopq and GrpA ´ Bq satisfy (AB4) and (Ab4*), the existence

of K-projective and K-injective resolutions follows, for example, from [BN93] (cf. [Spa88],

[GW23]). As for (2), the claim also comes from [Ser03] since GrpAq, GrpAopq and GrpA´Bq

are Grothendieck categories. □

Remark 2.10. From [BN93], we can take a K-projective (resp. K-injective) resolution

P Ñ M (resp. I Ñ M) such that each P j (resp. Ij) is a projective (resp. an injective)

object for every M in DpGrpA´Bqq or DpGrpBqq.

The following proposition is a generalization of [MN21, Proposition 6.6 and 6.8].
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Proposition 2.11. Let A,B and C be Z-algebras. Then, the following hold:

(1) HomAp´,´q has the right derived bifunctor

RHomAp´,´q : DpGrpB ´Aqqop ˆDpGrpC ´Aqq Ñ DpGrpC ´Bqq.

If P is a K-projective object in DpGrpB ´ Aqq or I is a K-injective object in

DpGrpC ´Aqq, then

RHomApP, Iq – HomApP, Iq

in DpGrpC ´Bqq.

(2) p´ bA´q has the left derived bifunctor p´ bL
A´q

p´ bL
A´q : DpGrpB ´Aqq ˆDpGrpA´ Cqq Ñ DpGrpB ´ Cqq.

If P1 is a K-projective object in DpGrpB ´ Aqq or P2 is a K-projective object in

DpGrpA´ Cqq, then

P1 bL
AP2 – P1 bAP2

in DpGrpB ´ Cqq.

Proof. (1) We want to apply [Yek20, Theorem 9.3.1] (cf. [Yek20, Proposition 9.3.10,

Theorem 12.2.1], [Hos97, Proposition 17.3, 17.4], [GV24, Lemma 5.13], [Har66]). We need

to check the following conditions:

(a) GrpA´Cq (resp. GrpB ´Aq) has enough K-injective objects (resp. K-projective

objects).

(b) Let f : P1 Ñ P2 and g : I1 Ñ I2 be isomorphisms in DpGrpB´Aqq and DpGrpC´

Aqq, respectively. If either P1, P2 are K-projective or I1, I2 are K-injective, then

the induced morphism naturally defined by f and g

HomApP1, gq ˝ HomApf, I1q : HomApP2, I1q Ñ HomApP1, I2q

is an isomorphism in DpGrpC ´Bqq.

The condition (a) follows from Proposition 2.9. So, it is enough to check (b). We show

that HomApP1, gq and HomApf, I1q are quasi-isomorphisms.

We assume that I1, I2 are K-injective. It is enough to check it degree by degree. Firstly,

note that eiI1, eiI2 are K-injective objects in GrpAq for all i P Z from Proposition 2.8.

As for HomApP1, gq, since eig : eiI1 Ñ eiI2 is a homotopy equivalence ([Spa88, Propo-

sition 1.5], [Ser03, Proposition 2.3]), we have

H lpHomApejP1, eigqq : H lpHomApejP1, eiI1qq
„
ÝÑ H lpHomApejP1, eiI2qq

for all i, j, l P Z. So, the isomorphism follows from

H lpHomApP1, I1qqi,j – H lpHomApejP1, eiI1qq,

H lpHomApP1, I2qqi,j – H lpHomApejP1, eiI2qq

and that H lpHomApejP1, eigqq corresponds to the morphism H lpHomApP1, gqqi,j for all

i, j, l P Z.
As for HomApf, I1q, let P3 be the cone of f . Then, P3 is an acyclic complex. So, we

have

H lpHomApejP3, eiI1qq – 0
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for all i, j, l P Z. This induces the isomorphism

H lpHomApejf, eiI1qq : H lpHomApejP2, eiI1qq
„
ÝÑ H lpHomApejP1, eiI1qq

for all i, j, l P Z. Therefore, we have the isomorphism from

H lpHomApP2, I1qqi,j – H lpHomApejP2, eiI1qq,

H lpHomApP1, I1qqi,j – H lpHomApejP1, eiI1qq

and that H lpHomApejf, eiI1qq corresponds to the morphism H lpHomApf, I1qqi,j for all

i, j, l P Z. In the case that P1, P2 are K-projective, the claim can be shown in the same

way.

(2) We can show the statement in the same way as (1). However, note that we use (3)

of Lemma 2.2. □

Remark 2.12. From the proof of Proposition 2.11, if you want to calculate RHomApM,Nq

for M P DpGrpB ´ Aqq and N P DpGrpC ´ Aqq, for example, it is enough to take a

resolution of N Ñ I in DpGrpC ´ Aqq such that each eiI is K-injective in DpGrpAqq for

all i P Z.

M P GrpAq is called free it is isomorphic to a direct sum of objects in teiAuiPZ. Let PA
be the set of finite direct sums of objects in teiAuiPZ. Then, we say that a graded right

A-module M is finitely generated if there exists an epimorphism P Ñ M with P P PA.
We denote the category of finitely generated graded right (resp. left) A-modules by grpAq

(resp. grpAopq). A graded right A-module M is said to be locally finite if each component

Mi is a finite-dimensional k-vector space for all i P Z. We denote by Grlf pAq the category of

locally finite graded right A-modules. For another Z-algebra B, we similarly define locally

finite bigraded A-B-bimodules and denote their category by Grlf pA ´ Bq. Moreover, we

say that a graded right A-module M is cofinite if M 1 is a finitely generated graded left

A-module. We denote the category of cofinite graded right A-modules by gr1pAq.

Definition 2.13 ([MN21, Definition 3.1]). Let A be a connected Z-algebra.
(1) A finitely generated minimal free resolution of a graded right A-module M is an

exact sequence

¨ ¨ ¨
d3
ÝÑ F2

d2
ÝÑ F1

d1
ÝÑ F0

d0
ÝÑ M Ñ 0

such that each Fi is a finite free A-module and Impdiq Ă Fi´1Aą0.

(2) A is called right (resp. left) Ext-finite if for any Si P GrpAq (resp. GrpAopq), there

exists a finitely generated minimal free resolution of Si in GrpAq (resp. GrpAopq).

If A is right and left Ext-finite, then we say that A is Ext-finite.

Definition 2.14 ([VdB11, Definition 2.1]). Let A be a Z-algebra. A is right noetherian

(resp. left noetherian) if GrpAq (resp. GrpAopq) is a locally noetherian category. If A is

right and left noetherian, then we say that A is noetherian.

Remark 2.15 ([MN25, Section 2.3]). The condition that A is right noetherian is equivalent

to the following conditions:

‚ eiA is a noetherian object in GrpAq for all i P Z, or
‚ grpAq is a noetherian category.

Remark 2.16 ([MN25, Section 3.1]). Let A be a connected Z-algebra. Then, the following

holds:

A is right noetherian ñ A is right Ext-finite ñ A is locally finite.
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Let A, B be Z-algebras. We denote by Dlf pGrpAqq the derived category of graded

right A-modules whose cohomology modules lie in Grlf pAq. Similarly, we denote by

Dlf pGrpAqBq the derived category of bigraded A-B-bimodules whose cohomology modules

lie in Grlf pA ´ Bq. If A is right noetherian, we write Df pGrpAqq and Dcof pGrpAopqq for

the derived categories of graded right A-modules whose cohomology modules lie in grpAq

and gr1pAopq, respectively.

The following Matlis duality is important in this paper. The case of graded algebras is

well-known (for example, see [Yek20, Theorem 15.2.34], [VdB97, Proposition 3.1]).

Theorem 2.17 (Matlis duality). Let A,B be Z-algebras.
(1) The functor p´q1 induces equivalences of categories

p´q1 : Dlf pGrpAqqop
„

ÝÝÑ Dlf pGrpAopqq,

p´q1 : Dlf pGrpA´Bqqop
„

ÝÝÑ Dlf pGrpB ´Aqq.

We assume that A is right noetherian below.

(2) grpAq and gr1pAq are Serre subcategories of Grlf pAq and Grlf pAopq, respectively.

(3) The functor p´q1 induces an equivalence of categories

p´q1 : Df pGrpAqqop
„

ÝÝÑ Dcof pGrpAopqq.

Proof. (1) There are natural morphisms

IdGrlf pAqop Ñ p´q2,

IdGrlf pA´Bqop Ñ p´q2,

which are isomorphisms. The equivalences extend to the desired ones.

(2) Since A is right noetherian, grpAq forms an abelian subcategory of Grlf pAq. The

remaining part about grpAq is straightforward. As for gr1pAopq, from (1), we have an

equivalence between Grlf pAqop and Grlf pAopq. This induces an equivalence of categories

between grpAqop and gr1pAopq and we have the claim.

(3) The argument for (3) is analogous to that of (2). □

Corollary 2.18. Let A,B,C be Z-algebras. Let M P Dlf pGrpB´Aqq (resp. Dlf pGrpAqq)

and N P Dlf pGrpC ´Aqq (resp. Dlf pGrpAqq). Then, there is an isomorphism

RHomApM,Nq – RHomAoppN 1,M 1q.

Proof. We prove the claim only whenM P Dlf pGrpB´Aqq and N P Dlf pGrpC´Aqq. The

result follows from the following isomorphisms

H lpRHomApM,Nqqi,j – HomDpGrpAqqpejM, eiN rmsq

– HomDpGrpAopqqpN
1eir´ms,M 1ejq pTheorem 2.17q

– H lpRHomAoppN 1,M 1qqi,j .

□

3. Local cohomology

In this section, we study local cohomology for Z-algebras and its properties. We develop

a theory on local cohomology for connected Z-algebras and generalize known results such as

local duality in more general settings (cf. [MN21], [MN24]). We also consider χ-condition

for Z-algebras and give a characterization of χ-condition by using local cohomology.
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3.1. Definition of local cohomology. Let A be a connected Z-algebra.
For a graded right A-module M , M is called right (resp. left) bounded if Měn “ 0

(resp. Mďn “ 0) for some n P Z. M is called bounded if M is right and left bounded.

We often assume either of the following conditions:

Condition 3.1. (1) A is a right Ext-finite connected Z-algebra.
(2) A is a right noetherian connected Z-algebra.

Definition 3.2. Let A be a connected Z-algebra. Let M P GrpAq (resp. M P GrpAopq).

(1) m P M is called right torsion (resp. left torsion) if mAěn “ 0 (resp. Aěnm “ 0)

for sufficiently large n " 0.

(2) The set of all right (resp. left) torsion elements in M is denoted by ΓmApMq (resp.

ΓmAop pMq) and called the mA-torsion submodule (resp. mAop-torsion submodule)

of M .

(3) M is called mA-torsion (resp. mAop-torsion) if ΓmApMq “ M (resp. ΓmAop pMq “

M).

We often omit the words “right” and “left”. One may also write torsion over A and Aop

for mA-torsion or mAop-torsion, respectively. If the context is clear, we can omit the words

“over A” and “over Aop”.

We denote by TorpAq the full subcategory of GrpAq consisting of torsion modules. Then,

ΓmAp´q determines a left exact functor

ΓmA : GrpAq ÝÑ TorpAq,

which is a right adjoint functor of the inclusion functor ι : TorpAq ãÑ GrpAq.

Proposition 3.3 (cf. [MN21, Lemma 5.8]). Let A be a connected Z-algebra. There is an

isomorphism of functors

ΓmAp´q – lim
ÝÑ
n

HomApA{Aěn,´q.

We also define a functor Socp´q by

Soc : GrpAq ÝÑ GrpAq, M ÞÝÑ HomApK,Mq.

From the definition, SocpMq is a graded right A-submodule of M . Here, we use the

connectedness of A and the isomorphism HomApA,Mq – M . In addition, for every

M P DpGrpAqq, we define SocpMq in the same way, which is also a subcomplex of graded

right A-modules of M .

Let B be a Z-algebra. In the same way, we can define a left exact functor

ΓmA : GrpB ´Aq ÝÑ GrpB ´Aq,

M ÞÝÑ ΓmAp
à

i

eiMq.

For a bigraded B-A-bimodule M , this induces ResApΓmApMqq P TorpAq. Note that we

have
À

i ΓmApeiMq – ΓmAp
À

i eiMq because ΓmA is a right adjoint of ι and so it commutes

with direct limits ([Stacks, Lemma 4.24.5]).

Remark 3.4. In [MN21, Lemma 5.8, Lemma 6.9], the authors assume that A is right Ext-

finite, but this condition is not necessary for Proposition 3.3 and to define the functor

ΓmAp´q for bigraded B-A-bimodules.
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By Proposition 2.9 and the fact that ΓmAp´q preserves a quasi-isomorphism between

K-injective objects in DpGrpAqq, we can define the right derived functor of the ΓmAp´q:

RΓmAp´q : DpGrpAqq ÝÑ DpGrpAqq.

For M P DpGrpAqq, if M Ñ I is a K-injective resolution of M , then RΓmApMq – ΓmApIq.

The following quasi-compactness of RΓmAp´q is important in this paper.

Proposition 3.5 (Quasi-compactness of ΓmAp´q, [MN21, Proposition 6.9]). Suppose that

A satisfies (1) of Condition 3.1. Then, RiΓmAp´q commutes with direct limits for all

i ě 0.

We can also define the right derived functor RΓmAp´q for bigraded B-A-bimodules and

we can calculate RΓmApMq by taking a K-resolution M Ñ I in DpGrpB´Aqq. Note that

as in Remark 2.12, it is enough to take a resolution of M in DpGrpB´Aqq such that each

eiI is K-injective in DpGrpAqq for all i P Z when we calculate RΓmApMq.

The (right) cohomological dimension cdpΓmAq of ΓmAp´q is defined by

supti P Z | RiΓmApMq ‰ 0 for some M P GrpAqu.

Remark 3.6. The analogous definitions and facts for ΓmAop hold, and we will use them

without further comment.

3.2. Basic properties. In this subsection, we study basic properties of torsion modules.

Lemma 3.7. Let A be a connected Z-algebra.
(1) We have isomorphisms of functors:

p´q1 – HomKp´,Kq – HomAp´, A1q,

HomKp´,ResKpKqq – HomAp´,ResApA1qq.

(2) ResApA1q and eiA
1 are injective objects in GrpAq for all i P Z.

Proof. (1) From Proposition 2.5, we obtain an isomorphism of k-modules

HomKpeiM bAA, ejKq – HomApeiM,HomKpA, ejKqq

for any M P GrpAq. Moreover,

HomKpM,Kqji – HomKpeiM bAA, ejKq,

HomApM,A1qji – HomApeiM,HomKpA, ejKqq.

Thus, we have the first isomorphism. In the same way, the second isomorphism follows as

well.

(2) Since the functor HomKp´,ResKpKqq is exact, so A is an injective object in GrpAq

from (1). For eiA
1, since it is a direct summand of the injective object ResApA1q, it is also

injective. □

Lemma 3.8. Let A be a right noetherian Z-algebra. Let tIjujPJ be a set of injective objects

in GrpAq. Then,
À

jPJ Ij is an injective object in GrpAq.

Proof. Since GrpAq is a locally noetherian Grothendieck category, injective objects are

closed under direct sums. For example see, [Ste75, Proposition 4.3] or [Pop73]. □

Lemma 3.9. Let W P GrpKq. Then, for every i P Z, there exists a set Xi such that

W “
À

iPZ
À

xPXi
eiK.
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Proof. Let W “
À

iPZWi. Let rKl be a Z-algebra defined by

p rKlqij “

#

k if i “ j “ l,

0 otherwise

and we define ĂWl by

pĂWlqi “

#

Wl if i “ l,

0 otherwise.

Then, ĂWl is a rKl-module. Any rKl-module concentrated in degree l is of the form
À

xPXl
elK for some set Xl. This induces the lemma. □

Let A be a connected Z-algebra and M P GrpAq. A graded submodule N Ă M is

essential if for every graded submodule L Ă M , LXN is non-empty.

Lemma 3.10. Let A be a connected Z-algebra. Let M P GrpAq and put W “ SocpMq.

Then, if M is torsion, then W Ă M is an essential graded submodule.

Proof. The proof is the same as [Yek20, Lemma 16.3.8]. But, we give a proof for the

convenience of the reader.

Let N Ă M be a graded submodule. Let n P N be a non-zero homogeneous element.

Then, there exists a unique i P Z such that nAěi`1 “ 0 and nAěi ‰ 0. So, there is a

homogeneous element a P Ai such that na ‰ 0. This element na belongs to W . □

Lemma 3.11. Under the condition (2) of Condition 3.1, let W P GrpKq. Set I “

W bKA
1 P GrpAq. Then,

(1) I is an injective object in GrpAq.

(2) I is torsion.

(3) SocpIq “ W .

(4) W Ă I is an essential graded submodule.

Proof. (1) From Lemma 3.9, we have W “
À

iPZ
À

xPXi
eiK for some sets Xi pi P Zq.

Then,

W bKA
1 “

à

iPZ

à

xPXi

eiK bKA
1 –

à

iPZ

à

xPXi

eiA
1.

So, from (2) of Lemma 3.7 and Lemma 3.8, I is an injective object in GrpAq.

(2) Because each eiA
1 is torsion and A is right Ext-finite, we obtain

ΓmApIq – ΓmA

˜

à

iPZ

à

xPXi

eiA
1

¸

–
à

iPZ

à

xPXi

ΓmApeiA
1q –

à

iPZ

à

xPXi

eiA
1 – I.

(3) By the definition of p´q1 and Proposition 2.5, we compute

SocpeiA
1qj “ HomApK, eiA

1qj – HomApejK, eiA
1q

– HomApejK,HomKpA, eiKqq

– HomKpejK bAA, eiKq

– HomKpejK, eiKq.

Thus, SocpeiA
1q is isomorphic to eiK. This shows (3).

(4) The claim follows from (2), (3) and Lemma 3.10. □

Remark 3.12. (2), (4) need only the assumption that A is right Ext-finite. (3) needs only

the assumption that A is connected.
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Proposition 3.13. Suppose A satisfies (2) of Condition 3.1 and M P GrpAq. Set W “

SocpMq. Then, the following conditions are equivalent:

(1) M is torsion.

(2) W Ă M is an essential graded submodule.

(3) There exists an injective morphism

f :M ãÑ W bKA
1

which is gives an essential graded submodule of W bKA
1 and f |W “ IdW .

Proof. (1) ñ (2): This follows from Lemma 3.10.

(2) ñ (3): Denote by i :W ãÑ M the inclusion morphism. By Lemma 3.11, W bKA
1 is

an injective object in GrpAq. Tensoring the map K ãÑ A1 with W bK´ yields an injective

morphism j : W ãÑ W bKA
1. So, we obtain a morphism f : M Ñ W bKA

1 such that

j “ f ˝ i. From the essentiality of W Ă M , we can show that f is injective.

(3) ñ (1): This follows by combining the assumption that f is injective with the facts

that each eiA
1 is torsion and TorpAq is a Serre subcategory of GrpAq ([MN21, Lemma

3.5]), which is closed under direct sums. □

Remark 3.14. When we prove p2q ñ p3q, we use the assumption that A is right noetherian.

When we prove p3q ñ p1q, we only use the assumption that A is right Ext-finite.

Let A be a connectecd Z-algebra and M P GrpAq. Then, the injective hull EpMq of M

is a graded right A-module containing M which is an injective object in GrpAq and M is

an essential graded submodule of EpMq. Every graded right A-module has an injective

hull since GrpAq is a Grothendieck category (see [Ste75, Section V.2 Examples], [Pop73,

Theorem 10.10]).

Lemma 3.15. Suppose A satisfies (2) of Condition 3.1 and let M be a torsion graded

right A-module. Then, EpMq – W bKA
1, where W “ SocpMq.

Proof. We can obtain the lemma by combining Lemma 3.11, Proposition 3.13 and the

uniqueness of injective hulls. □

Lemma 3.16. Suppose A satisfies (2) of Condition 3.1 and let I be an injective object in

GrpAq. Then, ΓmApIq – W bKA
1, where W “ SocpIq.

Proof. Considering the following commutative diagram:

W W bKA
1

I

i

j
φ

, where i, j are the inclusion morphisms and φ is obtained by the definition of injective

hulls. Then, φ is injective since W is an essential graded submodule of W bKA
1 from (4)

of Lemma 3.11. We decompose I as I “ Impφq ‘ J by using the injectivity of W bKA
1,

which is from (1) of Lemma 3.11. Then, we have

SocpΓmApJqq “ SocpJq “ W X J Ă ΓmApJq,

which is an essential injection from p1q ñ p2q of Proposition 3.18. By combining this with

the fact that Impφq is torsion from (2) of Lemma 3.11, we have

ΓmApIq – Impφq – W bKA
1.

□
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Corollary 3.17 (Stableness of ΓmAp´q). Suppose that A satisfies (2) of Condition 3.1

and let I be an injective object in GrpAq. Then, ΓmApIq is an injective object in GrpAq.

Proof. This is from (1) of Lemma 3.11 and Lemma 3.16. □

Proposition 3.18. Suppose that A satisfies (2) of Condition 3.1. Let B,C be connected

Z-algebras. Let M P D‹pGrpB ´ Aqq and N P D`pGrpC ´ Aqq, where ‹ “ H if cdpΓmAq

is finite, and ‹ “ ` otherwise. Assume that ResApH ipMqq is torsion for all i P Z. Then,

the following hold:

(1) RΓmApMq » M in DpGrpB ´Aqq.

(2) RHomApM,Nq » RHomApM,RΓmApNqq in DpGrpC ´Bqq.

Proof. (1) We consider the unbounded case. We take a Cartan-Eilenberg resolution M Ñ

I‚‚, which induces a quasi-isomorphismM Ñ TotpI‚‚q in CpGrpB´Aqq ([Wei96, Theorem

A.3]). We also truncate I‚‚ in the second degree at cdpΓmAq ` 1. Let Ĩ‚‚ denote the

truncated complex. Then, Ĩ‚‚ is a double complex with finitely many nonzero components

in each total degree, and each eiĨ
p,q is ΓmA-acyclic. Thus, we have the following spectral

sequence (([Wei94, page 150, 5.7.9], [Stacks, Lemma 12.25.3])):

Ep,q2 “ RpΓmApHqpMqq ñ Ep`q “ Hp`qpTotpΓmApĨ‚‚qqq – Hp`qpΓmApTotpĨ‚‚qqq.

From [Stacks, Lemma 12.25.4], M Ñ TotpĨ‚‚q is a quasi-isomorphism. Since cdpΓmAq is

finite and each eiTotpĨ
‚‚qn “

À

k`l“n eiĨ
k,l is a ΓmA-acyclic object, we obtain

Hp`qpΓmApTotpĨ‚‚qqq – Rp`qΓmApMq.

Hence, it is enough to show that RiΓmApMq “ 0 for all i ą 0 and M P GrpB ´ Aq whose

restriction to A is torsion. This follows from [MN21, Lemma 5.10].

When M is bounded below, it is sufficient to use the Cartan-Eilenberg resolution to

obtain the spectral sequence. We do not need to take any truncation.

(2) We only prove the unbounded case. The bounded below case is proved in the same

way. Take a K-injective resolution of M Ñ IM in DpGrpB ´ Aqq. Here, we can assume

that each IjM is an injective object in GrpB ´Aq by Remark 2.10. Then, each eiI
j
M is an

injective object in GrpAq by Proposition 2.8. In the same way, we can take a K-injective

resolution of N Ñ IN in D`pGrpC ´ Aqq with eiI
j
N being an injective object in GrpAq.

Then, we have

RHomApM,Nq – HomApIM , IN q,

RΓmApNq – ΓmApIN q.

Moreover, since IN is bounded below and each eiI
j
N is injective in GrpAq, eiΓmApIN q –

ΓmApeiIN q is also K-injective in DpGrpAqq by Corollary 3.17. Thus, we have

RHomApM,RΓmApNqq – HomApIM ,ΓmApIN qq

from Remark 2.12. We also have the following quasi-isomorphisms:

HomApIM , IN q – HomApΓmApIM q, IN q,

HomApIM ,ΓmApIN qq – HomApΓmApIM q,ΓmApIN qq

from (1) and an isomorphism

HomApΓmApIM q, IN q – HomApΓmApIM q,ΓmApIN qq

because any homomorphism from ΓmApIM q to IN factors through ΓmApIN q. The claim

follows from the above isomorphisms. □
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Remark 3.19. In the proof of (1) of Proposition 3.18, we do not need the assumption that

A is right noetherian (it is enough to assume that A is right Ext-finite).

3.3. Local duality.

Lemma 3.20. Suppose A satisfies (1) of Condition 3.1. Let B be a connected Z-algebra.
We assume that cdpΓmAq is finite. Then, for M P DpGrpA´Aqq and N P DpGrpB´Aqq,

the following holds in DpGrpB ´Aqq:

RΓmApN bL
AMq – N bL

ARΓmApMq.

Proof. First of all, note that we can compute RΓmA over DpGrpB´Aqq by using complexes

of ΓmA-acyclic bigraded B-A-bimodules since cdpΓmAq is finite ([Wei94, Corollary 10. 5.11],

[Har66, Corollary 5.3 (γ)]).

Let M Ñ I be a K-injective resolution of M in DpGrpA ´ Aqq with each Ij being an

injective object in GrpA´Aq and P Ñ N be a K-projective resolution ofN inDpGrpB´Aqq

with each P j being a projective object in GrpB ´Aq from Remark 2.10. Then, we have

N bL
AM – P bAI

from Proposition 2.11. For any P j , there exists a bigraded B-A-bimodule Qj such that

P j ‘Qj is isomorphic to
À

pn1,n2qPJpBen2 bk en1Aq for some set J of integers which may

contain duplicates. Then,

pP j ‘Qjq bAI
i –

à

pn1,n2qPJ

pBen2 bk en1Aq bAI
i –

à

pn1,n2qPJ

pBen2 bk en1I
iq.

So, since ekI
i is injective in GrpAq (Lemma 2.2) and RmΓmA commutes with direct sums

(Proposition 3.5), we have

RmΓmAppP j ‘Qjq bAI
iq – RmΓmA

˜

à

pn1,n2qPJ

pBen2 bk en1Aq bAI
i

¸

– RmΓmA

˜

à

pn1,n2qPJ

pBen2 bk en1I
iq

¸

–
à

pn1,n2qPJ

RmΓmApBen2 bk en1I
iq – 0.

Note that in the last equality in the above calculation, we use the isomorphism

ResApRmΓmApBen2 bk en1I
iqq – RmΓmApResApBen2 bk en1I

iqq

and the fact ResApBen2 bk en1I
iq is a direct sum of en1I

i. Thus, P j bAI
i is a ΓmA-acyclic

bigraded B-A-bimodule for all i, j P Z. Because a direct sum of ΓmA-acyclic bigraded

B-A-bimodules is ΓmA-acyclic, we have

RΓmApN bL
AMq – ΓmApP bAIq.

By a similar argument,

ΓmApP bAIq – P bAΓmApIq.

Therefore, from the above isomorphisms, we obtain the claim. □

The following lemma is the derived Tensor-Hom adjunction. We omit the proof because

it is similar to the proof of Proposition 2.5.
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Lemma 3.21. Let A,B,C and D be connected Z-algebras. For M P DpGrpC ´Bqq, N P

DpGrpB´Aqq and L P DpGrpD´Aqq, the following isomorphism holds in DpGrpD´Cqq:

RHomBpM,RHomApN,Lqq – RHomApM bL
BN,Lq.

The following proposition is a generalization of [MN24, Theorem 2.1], where the authors

assumed that M is bounded below and B – K. We establish the local duality in full

generality.

Theorem 3.22 (Local duality). Suppose A satisfies (1) of Condition 3.1. We assume

that cdpΓmAq is finite. Then, for M P DpGrpB ´Aqq, we have

RΓmApMq1 – RHomApM,RΓmApAq1q

in DpGrpA´Bqq.

Proof. By using Lemma 3.20, Lemma 3.21 and the isomorphism (Lemma 3.7)

HomKp´,Kq – RHomAp´, A1q,

we have the following isomorphisms in DpGrpA´Bqq:

RΓmApMq1 – HomKpRΓmApMq,Kq

– RHomApRΓmApMq, A1q pLemma 3.7q

– RHomApRΓmApM bL
AAq, A1q

– RHomApM bL
ARΓmApAq, A1q pLemma 3.20q

– RHomApM,RHomApRΓmApAq, A1qq pLemma 3.21q

– RHomApM,RΓmApAq1q.

□

We can also show the generalization of [MN25, Theorem 3.21] in the unbounded case.

Corollary 3.23. Suppose A satisfies (1) of Condition 3.1. We assume that cdpΓmAq is

finite. Then, for M P DpGrpAqq, we have

RΓmApMq1 – RHomApM,RΓmApAq1q

in DpGrpAopqq.

Proof. The proof is exactly the same as [MN25, Theorem 3.21]. However, we give a proof

for the convenience of the reader. In fact, the corollary is given by the following calculation:

RΓmApMq1 – RΓmApe0pKe0 bkMqq1

– pe0RΓmApKe0 bkMqq1

– pRΓmApKe0 bkMq1qe0

– RHomApKe0 bkM,RΓmApAq1qe0 pTheorem 3.22q

– RHomApe0pKe0 bkMq,RΓmApAq1q

– RHomApM,RΓmApAq1q.

□
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3.4. Symmetricity of derived torsion functors.

Definition 3.24. Let A be a noetherian connected Z-algebra. Let M be an object in

DpGrpA´Aqq.

(1) M has weak symmetric derived torsion if for every i P Z, ARespH ipRΓmApMqqq is

mAop-torsion and ResApH ipRΓmAop pMqqq is mA-torsion.

(2) M has symmetric derived torsion if there exists an isomorphism

RΓmApMq – RΓmAop pMq.

Proposition 3.25. Let A be a noetherian connected Z-algebra. Let M be an object in

DpGrpA ´ Aqq. We assume that cdpΓmAq and cdpΓmAop q are finite. Then, the following

conditions are equivalent:

(1) M has weak symmetric derived torsion.

(2) M has symmetric derived torsion.

Proof. If M has symmetric derived torsion, then

ARespH ipRΓmApMqqq – ARespH ipRΓmAop pMqqq,

ResApH ipRΓmAop pMqqq – ResApH ipRΓmApMqqq.

Thus, M has weak symmetric derived torsion.

Next, assume that M has weak symmetric derived torsion. We have the following

diagram in DpGrpA´Aqq:

RΓmAop pAq bL
ApM bL

ARΓmApAqq pRΓmAop pAq bL
AMq bL

ARΓmApAq

AbL
ApM bL

ARΓmApAqq pRΓmAop pAq bL
AMq bL

AA

M bL
ARΓmApAq RΓmAop pAq bL

AM

f1

f0

f2

f3 f4

, where

‚ f0 comes from the associativity of derived tensor products.

‚ f1, f2 come from the natural morphisms:

RΓmAop pAq Ñ A, RΓmApAq Ñ A.

‚ f3, f4 come from the fact that A is the unit of derived tensor products.

From Lemma 3.20, it follows that

N bL
ARΓmApAq – RΓmApNq, RΓmAop pAq bL

AN – RΓmAop pNq

for any N P DpGrpA´Aqq.

By applying Proposition 3.18 and the isomorphisms to the above diagram, we have the

following diagram in DpGrpA´Aqq:

RΓmAop pRΓmApMqq RΓmApRΓmAop pMqq

RΓmApMq RΓmAop pMq.

g0
–

g1,3 – g2,4–
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Therefore, we have the desired isomorphism

g2,4 ˝ g0 ˝ g´1
1,3 : RΓmApMq

–
ÝÝÑ RΓmAop pMq.

□

3.5. χ-condition.

Definition 3.26. Let A be a connected Z-algebra.
(1) Assume that A is right noetherian. A satisfies right χ-condition if for every M P

grpAq and for every integer i, ExtiApK,Mq is a finite k-module.

(2) Assume that A is left noetherian. If Aop satisfies right χ-condition, we say that A

satisfies left χ-condition.

(3) A satisfies left and right χ-condition, then we say that A satisfies χ-condition.

Let A be a connected Z-algebra. Then, a minimal complex of injective A-modules is

a bounded below complex pI, dIq of injective right A-modules such that the submodule

Kerpdjq Ă Ij is a graded essential submodule for every j P Z. Let M P D`pGrpAqq. Then,

a minimal injective resolution of M is a minimal complex of injective A-modules pI, dIq

which is quasi-isomorphic to M . Since every graded right A-module has an injective

hull, we can construct a minimal injective resolution of M in the same way as [Yek20,

Proposition 13.26].

Lemma 3.27. Let A be a connected Z-algebra and M P D`pGrpAqq. Let pI, dIq be a

minimal injective resolution of M . We consider the subcomplex pSocpIq, dSocpIqq of pI, dIq.

Then, dSocpIq “ 0.

Proof. We can prove in the same way as [Yek20, Lemma 16.5.12]. But, we give a proof

for the convenience of the reader.

Take a homogeneous degree i element 0 ‰ x P pSocpIqjqi. Then, we have

xK “ xA Ă pSocpIqjqi Ă Ij ,

that is, xK is a graded submodule of Ij . Since xKXKerpdjIq ‰ 0 (essentiality of KerpdjIq),

we obtain x P KerpdjIq. □

Proposition 3.28. Let A be a right noetherian connected Z-algebra. Let M P D`pGrpAqq

and i be an integer. Then,

(1) If ExtiApK,Mq is a finite k-module, then RiΓmApMq is a cofinite A-module.

(2) If RjΓmApMq is a cofinite A-module for every j ď i, then ExtjApK,Mq is a finite

k-module for every j ď i.

Proof. (1) Take a minimal injective resolution M Ñ I of M and put W “ SocpIq. Then,

from Lemma 3.27, we have

ExtiApK,Mq – H ipHomApK, Iqq – H ipW q – W i.

Thus, W i is a finite k-module and W i –
À

pPZ
À

xPXi
p
epK for some finite sets Xi

p pp P Zq.

In addition, Xi
p “ H for all but finitely many p.

On the other hand,

RiΓmApMq – H ipΓmApIqq.

From Lemma 3.16, we have

ΓmApIiq – W i bKA
1 –

à

pPZ

à

xPXi
p

epA
1.
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Thus, because epA
1 is a cofinite A-module for every p P Z, ΓmApIiq is a cofinite A-module

and so is RiΓmApMq.

(2) Take a minimal injective resolution M Ñ I of M . Let i0 be the smallest integer

such that H i0pMq ‰ 0. Put W “ SocpIq. Then, as in (1), we have

W Ă ΓmApIq Ă I, ΓmApIiq – W i bKA
1, ExtiApK,Mq – W i.

We prove that W j is a finite k-module for any j ď i. Because i0 is the smallest integer

such that Ii0 ‰ 0, it is enough to start from j “ i0.

If j “ i0, we have an inclusion

W i0 Ă Ri0ΓmApMq

because of the fact that Ii0´1 “ 0 and Lemma 3.27. So, W i0 is a cofinite A-module. We

assume that

W i0 –
à

pPZ

à

xPX
i0
p

eppA{Aą0q –
à

pPZ

à

xPX
i0
p

epK

for some sets Xi0
p pp P Zq and

Ť

pPZX
i0
p is an infinite set. Then, we have an descending

chain of submodules of W i0 of infinite length. On the other hand, by Theorem 2.17, every

cofinite A-module is an artinian object in GrpAq. This is a contradiction. Thus, W i0 is a

finite k-module.

Take an integer j such that i0 ă j ď i and assume thatW j´1 is a finite k-module. Then,

we have the following diagram from the definition of RjΓmApMq, the above isomorphism

and Lemma 3.27:

ΓmApIj´1q KerpdjΓmA
pIq

q RjΓmApMq 0 (exact).

W j´1 bKA
1 W j

„

Thus, KerpdjΓmA
pIq

q is a cofinite A-module and so isW j . Therefore,W j is a finite k-module

as in the case j “ i0. □

From the proposition, we can give another characterization of χ-condition.

Corollary 3.29. Let A be a right (resp. left) noetherian connected Z-algebra. Then, A

satisfies right (resp. left) χ-condition if and only if for every M P grpAq (resp. grpAopq)

and every i, RiΓmApMq P gr1pAq (resp. RiΓmAop pMq P gr1pAopq).

Proof. The “only if” part follows from Proposition 3.28 (1). The “if” part follows from

Proposition 3.28 (2). □

We denote by D‹
pf,fq

pGrpA ´ Bqq the full subcategory of D‹pGrpA ´ Bqq consisting of

objects M whose restrictions AResj H ipMq and ResjBH
ipMq of the cohomology modules

H ipMq are finite over A and B, respectively. Here, ‹ P tH,`,´, bu.

Remark 3.30. Let A be a noetherian connected Z-algebra. Even if A satisfies χ-condition,

it is unclear whether an object M P Db
pf,fq

pGrpA ´ Aqq has weak symmetric derived

torsion. This phenomenon differs from the graded case ([Yek20, Proposition 16.5.19],

[VdB97, Corollary 4.8]). Note that, by Proposition 3.25, M has weak symmetric derived

torsion if and only if it has symmetric derived torsion.

In the case of a noetherian connected graded algebra R, for any graded R-bimodule M

that is finitely generated on both sides, if R satisfies χ-condition in the sense of [VdB97]
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or [AZ94], then RiΓmRpMq and RiΓmRop pMq are right limited, that is, RiΓmRpMqj “ 0

and RiΓmRop pMqj “ 0 for j " 0. Here, RiΓmRpMq and RiΓmRop pMq denote the i-th local

cohomology modules of M in the theory of graded algebras. This implies that RiΓmRpMq

and RiΓmRop pMq are torsion on both sides.

For M P GrpA ´ Aq such that Mej P grpAopq and ejM P grpAq for each j P Z,
Corollary 3.29 induces that RiΓmApejMq and RiΓmAop pMejq are right limited for any

i, j P Z. However, we cannot conclude from the same argument as in the graded case that

RiΓmApMq and RiΓmAop pMq are torsion on both sides, since M is Z2-graded.

However, for a noetherian connected Z-algebra A, then we can overcome the difficulty

in Remark 3.30 if we consider a r-periodic bigraded A-A-bimodule at least.

Proposition 3.31. Let A be a noetherian connected Z-algebra. Let M P D‹
pf,fq

pGrpA ´

Aqq, where ‹ “ H if cdpΓmAq is finite, and ‹ “ ` otherwise. If A satisfies χ-condition and

for any i, H ipMq is ri-periodic for some ri, then M has weak symmetric derived torsion.

Proof. When M is unbounded, as in the proof of Proposition 3.18, we have the spectral

sequence and isomorphisms

Ep,q2 “ RpΓmApHqpMqq ñ Ep`q “ Hp`qpTotpΓmApĨ‚‚qqq

– Hp`qpΓmApTotpĨ‚‚qqq

– Rp`qΓmApMq,

where Ĩ‚‚ is the truncated Cartan-Eilenberg resolution. So, we can assume that M P

GrpA ´ Aq. If M is bounded below, then we can also obtain deduction by considering a

Cartan-Eilenberg resolution without truncation.

We also assume thatM is r-periodic for some r ą 0. We can always do this becauseM is

r-periodic if and only ifM is p´rq-periodic (cf. [MN25, Lemma 2.14]). If φ : A
–

ÝÝÑ Apr, rq

is an isomorphism of Z-algebras which givesM – φMpr, rqφ, then we have an isomorphism

ep`lrM
–

ÝÝÑ epMp´lrqφ´l ,

where l P Z (Section 2.1). Moreover, if M Ñ I is a K-injective resolution, then so is

Mp´lrqφ´l Ñ Ip´lrqφ´l . Thus, we obtain

RiΓmApep`lrMq – RiΓmApepMp´lrqφ´lq

– RiΓmApepMqp´lrqφ´l .

If RiΓmApepMqn “ 0 if n ą ni,p, then RiΓmApep`lrMqn “ 0 if n ą ni,p ` lr.

Now suppose

m P epR
iΓmApMqen1 – RiΓmApepMqn1 ,

and assume that RiΓmApeqMqn2 “ 0 for p ´ r ` 1 ď q ď p and n2 ą ni,p,r. Then,

by the above observation, RiΓmApeqMqn2 “ 0 for p ` pl ´ 1qr ` 1 ď q ď p ` lr and

n2 ą ni,p,r ` lr. Hence, if we choose l such that n1 ą ni,p,r ` lr, then RiΓmApeqMqn1 “ 0

for p` pl ´ 1qr ` 1 ď q ď p` lr. Moreover,

eqR
iΓmApMqen1 – RiΓmApeqMqn1 “ 0 pq ě p` lrq.

Thus, m is left A-torsion, and RiΓmApMq is both left and right torsion.

In the same way, you can show that RiΓmAop pMq is left and right torsion. □
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4. Dualizing complexes

In this section, we define (balanced) dualizing complexes over noetherian connected

Z-algebras and study their properties. In particular, we prove the existence theorem of

balanced dualizing complexes over a noetherian connected Z-algebra A which satisfies

χ-condition, has finite local cohomological dimension and has symmetric derived torsion

functor as a bigraded A-A-bimodule.

4.1. Definition of (balanced) dualizing complexes.

Definition 4.1. Let A be a noetherian connected Z-algebra. RA P DbpGrpA ´ Aqq is a

dualizing complex over A if

(1) For every i, j, ResiAH
jpRAq is finite over A and AResiHjpRAq is finite over Aop.

(2) There exists a complex I P DbpGrpA ´ Aqq such that I – RA in DpGrpA ´ Aqq,

ResApIjq and ARespIjq are injective for every j in GrpAq and GrpAopq, respectively.

(3) The natural morphisms

ΨA : A Ñ RHomApRA, RAq,

ΨAop : A Ñ RHomAoppRA, RAq

are isomorphisms in DpGrpA´Aqq.

Moreover, RA is balanced if

RΓmApRAq – RΓmAop pRAq – A1

in DpGrpA´Aqq.

Remark 4.2. Indeed, it coincides with the definition in Section 1.2; see Lemma 4.4 and

Remark 4.11.

Definition 4.3. Let A be an abelian category. An object M in DpAq has finite injec-

tive dimension (resp. finite projective dimension) if there exists an integer i0 such that

ExtiApN,Mq “ 0 (resp. ExtiApM,Nq “ 0) for every |i| ą i0 and N P A.

Moreover, for an object M P A, we define the injective dimension inj¨dimApMq

(resp. projective dimension pd¨dimApMq) of M as the minimum integer i0 such that

ExtiApN,Mq “ 0 (resp. ExtiApM,Nq “ 0) for every i ą i0 and N P A.

(2) of Definition 4.1 is equivalent to the finiteness condition in Lemma 4.4. [Yek92,

Proposition 2.4] and [Har66, Proposition 7.6] are slightly generalized in terms of bound-

edness in Lemma 4.4 below.

Lemma 4.4. Let A be a noetherian Z-algebra and M be an object in DpGrpA ´ Aqq.

Then, the following conditions are equivalent:

(1) There exists a complex I P DbpGrpA ´ Aqq such that I – M in DpGrpA ´ Aqq,

ResApIjq and ARespIjq are injective for every j in GrpAq and GrpAopq, respec-

tively.

(2) ResApMq and ARespMq have finite injective dimension in GrpAq and GrpAopq,

respectively.

Proof. Much of the proof is similar to [Yek92, Proposition 2.4] and [Har66, Proposition

7.6]. However, we need some modifications because we treat unbounded complexes and

modules over Z-algebras.
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(1) ñ (2): Since we can use the isomorphism ResApMq – ResApIq in DpGrpAqq to

calculate ExtiApN,ResApMqq for N P GrpAq, ResApMq has finite injective dimension.

Similarly, ARespMq has finite injective dimension.

(2) ñ (1): Take a K-injective resolutionM Ñ I ofM inDpGrpA´Aqq (Proposition 2.9).

From the assumption, there exists a non-negative integer i0 such that

ExtiApN1,ResApMqq “ 0, ExtiAoppN2,ARespMqq “ 0

for every |i| ą i0 and N1 P GrpAq, N2 P GrpAopq.

Firstly, we show that H ipIq “ 0 for every |i| ą i0. If H
jpIq ‰ 0 for some |j| ą i0, then

we have the following commutative diagram:

BjpHomApZjpResApIqq,ResApIqqq ZjpHomApZjpResApIqq,ResApIqqq

HomApZjpResApIqq, BjpResApIqqq HomApZjpResApIqq, ZjpResApIqqq,

–

–

Ř

where BjpCq :“ ImpdCq, ZjpCq :“ KerpdCq for any complex pC, dCq. The horizontal arrow

in the top comes from the assumption. The horizontal arrow in the bottom is a proper

inclusion because BjpIq Ř ZjpIq. Thus, we have a contradiction from the above diagram.

Therefore, H ipIq “ 0 for every |i| ą i0 and there exists a complex Ĩ of injective objects in

GrpA´Aq such that Ĩ – I in DpGrpA´Aqq and Ĩj “ 0 for every j ă ´i0 ([Stacks, Lemma

13.15.5]). It also holds that the smart truncation τďi0`1pĨq – M in DpGrpA´Aqq.

Next, we show that the smart truncation J “ τďi0`1pĨq is a bounded complex such

that ResApJ jq and ARespJ jq are injective over A and Aop for every j, respectively. It is

enough to show that ResApBi0`1pJqq and ARespBi0`1pJqq are injective over A and Aop,

respectively. Because we have the following exact sequence of a chain complex

0 Ñ τďi0pĨq Ñ σďi0pĨq Ñ Bi0`1pJqr´i0s Ñ 0,

where σďi0pĨq is the stupid truncation of Ĩ at i0, we obtain a long exact sequence

¨ ¨ ¨ Ñ Exti0`1
A pN1,ResApσďi0pĨqqq Ñ Exti0`1

A pN1,ResApBi0`1pJqr´i0sqq

Ñ Exti0`2
A pN1,ResApτďi0pĨqqq Ñ ¨ ¨ ¨ .

Because ResApĨjq is injective in GrpAq for every j from Lemma 2.2 and Lemma 3.8 (we

use the assumption that A is right noetherian here), we have

Exti0`1
A pN1,ResApσďi0pĨqqq “ 0.

Since τďi0pĨq – Ĩ in DpGrpA´Aqq, we have

Exti0`2
A pN1,ResApτďi0pĨqqq “ 0.

Thus, we obtain

Ext1ApN1,ResApBi0`1pJqqq – Exti0`1
A pN1,ResApBi0`1pJqr´i0sqq “ 0 pN1 P GrpAqq

and ResApBi0`1pJqq is injective in GrpAq. Similarly, we can show that ARespBi0`1pJqq

is injective in GrpAopq. Note that, in the proof, we need to use the assumption that A is

left noetherian. Therefore, J is the desired complex. □

Remark 4.5. It is not necessary that a K-injective resolutionM Ñ I ofM P DpGrpA´Aqq

can be used to compute RHomApN,ResApMqq. This is the reason why we assume that

A is noetherian in Lemma 4.4.
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We denote by D‹
pf,´q

pGrpA ´ Bqq and D‹
p´,fq

pGrpA ´ Bqq by the full subcategory of

D‹pGrpA´Bqq consisting the objectsM whose restrictions AResj H ipMq and ResjBH
ipMq

of the cohomologies H ipMq are finite over A and B, respectively. Here, ‹ P tH,`,´, bu.

Let A,B be connected Z-algebra with A noetherian. Let RA be a dualizing complex

over A. Then, we define the functors DA, DAop by

DA : DpGrpB ´Aqqop Ñ DpGrpA´Bqq, DAp´q “ RHomAp´, RAq,

DAop : DpGrpA´Bqqop Ñ DpGrpB ´Aqq, DAopp´q “ RHomAopp´, RAq.

4.2. Properties of (balanced) dualizing complexes. First of all, we recall the defi-

nition of way-out functors because we often use a lemma about way-out functors.

Let A,B be abelian categories. Let A1,B1 be thick (i.e. extension-closed) subcategories

of A and B, respectively. We denote by D‹
A1pAq and D‹

B1pBq the full subcategories of

D‹pAq and D‹pBq consisting of objects whose cohomology sheaves are supported on A1

and B1, respectively. Here, ‹ P tH,`,´u.

Definition 4.6 ([Har66, Chapter 1, Section 7], [Hos97, Definition 22.1]). F : D‹pAq Ñ

DpBq be a B-functor, where ‹ P tH,`,´u. Then, F is way-out right (resp. left) if for

every n P Z, there exists m P Z such that for every M P D‹pAq with H ipMq “ 0 and all

i ă m (resp. i ą m), we have H ipF pMqq “ 0 for all i ă n (resp. i ą n). F is called

way-out on both directions if F is way-out right and left.

Lemma 4.7 (The dual version of [Har66, Proposition 7.3], [Hos97, Proposition 23.6]). Let

F,G : D‹pAq Ñ DpBq be B-functors, where ‹ P tH,`,´u. Let η : F Ñ G be a morphism

of functors. Let P be a collection of objects in A1. We assume that

(a) Any object in A1 admits an epimorphism from an object in P,

(b) F is way-out left (resp. way-out on both directions).

Then, the following hold:

(1) If F pP q P DB1pBq for every P P P, then F pMq P DB1pBq for every M P D´
A1pAq X

D‹pAq (resp. DA1pAq XD‹pAq).

(2) If ηP : F pP q Ñ GpP q is an isomorphism for every P P P, then ηM : F pMq Ñ

GpMq is an isomorphism for every M P D´
A1pAqXD‹pAq (resp. DA1pAqXD‹pAq).

The lemma also holds when we replace epimorphisms by monomorphisms, way-out left

by way-out right and D´ by D`.

Proposition 4.8. Let A,B be connected Z-algebras with A noetherian. Let RA be a

dualizing complex over A. Then,

(1) If M P D
p´,fq

pGrpB ´ Aqq (resp. D
pf,´q

pGrpA ´ Bqq), then DApMq P

D
pf,´q

pGrpA´Bqq (resp. D
p´,fq

pGrpB ´Aqq).

(2) If M P D
p´,fq

pGrpB ´Aqq (resp. D
pf,´q

pGrpA´Bqq), then the natural morphism

φ1 :M Ñ DAoppDApMqq (resp. φ2 :M Ñ DApDAoppMqq) is an isomorphism.

In particular, we have an equivalence D
p´,fq

pGrpB´Aqqop – D
pf,´q

pGrpA´Bqq

(resp. D
pf,´q

pGrpA´Bqqop – D
p´,fq

pGrpB ´Aqq).

Proof. (1) We only show that ifM P D
p´,fq

pGrpB´Aqq, thenDApMq P D
pf,´q

pGrpA´Bqq.

We denote by Grp´,fqpB´Aq (resp. Grpf,´qpA´Bq) the full subcategory of GrpB´Aq

(resp. GrpA ´ Bq) consisting of objects N such that ResjApNq is finite over A for every



DUALIZING COMPLEXES OVER Z-ALGEBRAS 27

j P Z. For each N P Grp´,fqpB ´ Aq and i P Z, there exists a finite set Ji of integers that

may contain duplicates such that there exists an epimorphism

à

jPJi

ejA↠ ResiApNq.

In addition, we have a natural homomorphism of B-A-bimodules

Kei bk Res
i
ApNq ÝÑ N, bb n ÞÑ bn.

Here, we use the connectedness of B. Thus, we have an epimorphism

à

iPZ

à

jPJi

Kei bk ejA↠ N

and the set

P :“

#

à

iPZ

à

jPJi

Kei bk ejA

ˇ

ˇ

ˇ

ˇ

ˇ

Ji :
a finite set of integers

that may contain duplicates
for each i P Z

+

satisfies the condition (a) in Lemma 4.7 when we takeA “ GrpB´Aq andA1 “ Grp´,fqpB´

Aq. Here, note that DA is way-out on both direction because we can use the quasi-

isomorphism RA – I in (2) of Definition 4.1 to calculate DA by Remark 2.12. So, by

Lemma 4.7 (1), it is enough to show that DApP q P D
pf,´q

pGrpA´Bqq for every P P P.

Take P “
À

iPZ
À

jPJi
Kei bk ejA P P. Then, for any l P Z, we have

AResl pDA pP qq – RHomA

˜

à

iPZ

à

jPJi

Kei bk ejA,RA

¸

el

– RHomA

˜

à

jPJl

ejA,RA

¸

–
à

jPJl

RHomApejA,RAq pby |Jl| ă 8q

–
à

jPJl

RAej .

From (1) of Definition 4.1, HkpRAejq P grpAopq for all k P Z and it follows that DApP q P

D
pf,´q

pGrpA ´ Bqq. Therefore, we obtain DApMq P D
pf,´q

pGrpA ´ Bqq for every M P

D
p´,fq

pGrpB ´Aqq.

(2) We only show that if M P D
p´,fq

pGrpB ´Aqq, then

DAoppDApMqq – M P DpGrpB ´Aqq.

As in (1), the set P satisfies the condition (a) in Lemma 4.7 when we take A “ GrpB´Aq

and A1 “ Grp´,fqpB ´Aq. In addition, DAop ˝DA is way-out on both directions. So, it is

enough to show that the natural morphism

M ÝÑ DAoppDApMqq

is an isomorphism in DpGrpB ´Aqq when M P P.
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Take P “
À

iPZ
À

jPJi
Kei bk ejA P P. Then, we have

ReslA pDAop pDA pP qqq “ elRHomAop

˜

RHomA

˜

à

iPZ

à

jPJi

Kei bk ejA,RA

¸

, RA

¸

– RHomAop

˜

RHomA

˜

à

iPZ

à

jPJi

Kei bk ejA,RA

¸

el, RA

¸

– RHomAop

˜

à

jPJl

RHomApejA,RAq, RA

¸

psee (1)q

–
à

jPJl

RHomAoppRHomApejA,RAq, RAq pby |Jl| ă 8q

–
à

jPJl

RHomAoppRAej , RAq

–
à

jPJl

ej RHomAoppRA, RAq

–
à

jPJl

ejA pby (3) of Definition 4.1q.

This isomorphism shows that elφ1 is an isomorphism of objects in DpGrpAqq for every

l P Z. Therefore, φ1 is an isomorphism in DpGrpB ´Aqq.

□

Remark 4.9. Note that when we prove the proposition for M P D
pf,´q

pGrpA´Bqq, we use

the set Pop of objects in Grpf,´qpA´Bq defined by

Pop :“

#

à

iPZ

à

jPJi

Aej bk eiK

ˇ

ˇ

ˇ

ˇ

ˇ

Ji :
a finite set of integers

that may contain duplicates
for each i P Z

+

instead of P.

Corollary 4.10. Let A be a noetherian connected Z-algebra. Let RA be a dualizing com-

plex over A. Then,

(1) If M P Df pGrpAqq (resp. Df pGrpAopqq), then DApMq P Df pGrpAopqq (resp.

Df pGrpAqq).

(2) If M P Df pGrpAqq (resp. Df pGrpAopqq), then the natural morphism φ1 : M Ñ

DAoppDApMqq (resp. φ2 :M Ñ DApDAoppMqq) is an isomorphism.

Remark 4.11. We can replace condition (3) of Definition 4.1 by condition (2) of Corol-

lary 4.10. Indeed, suppose R P DbpGrpA ´ Aqq satisfies conditions (1) and (2) of Defini-

tion 4.1 together with condition (2) of Corollary 4.10. Then, R satisfies condition (3) of

Definition 4.1. To see this, take M “ ResApAq (resp. M “ ARespAq) in condition (2) of

Corollary 4.10, and use that ResA and ARes reflect isomorphisms, i.e., ΦA (resp. ΦAop) is

an isomorphism if and only if ResApΦAq (resp. ARespΦAopq) is an isomorphism.

Theorem 4.12. Let A be a noetherian connected Z-algebra and RA be a balanced dualizing

complex over A. Let B be another connected Z-algebra. Then, we have an isomorphism

in DpGrpA´Bqq

RHomApM,RAq – RΓmApMq1

for all M P Dp´,fqpGrpB ´Aqq. Similarly, we have an isomorphism in DpGrpB ´Aqq

RHomAoppM,RAq – RΓmAop pMq1
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for all N P Dpf,´qpGrpA´Bqq.

Proof. We follow the strategy in the proofs of [CWZ02, Proposition 3.4] or [Yek20, Theo-

rem 17.2.7]. We only prove the first isomorphism. The second isomorphism can be proved

in the same way.

Firstly, we construct a morphism fromRHomAp´, RAq toRΓmAp´q1. Take the following

K-injective resolutions

φ1 : R ÝÑ J, φ2 : ΓmApJq ÝÑ K, φM :M ÝÑ I.

We also have natural morphisms

ψ : HomApI, Jq ÝÑ HomApΓmApIq,ΓmApJqq,

pφ2q˚ : HomApΓmApIq,ΓmApJqq ÝÑ HomApΓmApIq,Kq.

By considering the conposition of morphisms ψ, pφ2q˚, α, β, we obtain a morphism ξM

RHomApM,RAq RHomApRΓmApMq,RΓmApRqq

ö RHomApRΓmApMq, A1q

RΓmApMq1

pφ2q˚˝ψ

ξM

–α

–β

, i.e. ξM “ β ˝ α ˝ pφ2q˚ ˝ ψ. Here, α is an isomorphism in the balancedness of RA
in Definition 4.1 and β is Lemma 3.7. This ξM is functorial on M . Hence, we have a

morphism ξ of functors from RHomAp´, RAq to RΓmAp´q1.

Secondly, we show that ξ is an isomorphism. We put F “ RΓmAp´q1. From Propo-

sition 4.8, DA ˝ DAop – IdDpf,´qpGrpA´Bqq. Thus, it is enough to show that the natural

morphism

ξ ˝ IdDAop : DA ˝DAop Ñ F ˝DAop

is an isomorphism. F and DAop are way-out on both directions. So, by Lemma 4.7 (2), it

is enough to show that

pξ ˝ IdDAop qP : pDA ˝DAopqpP q ÝÑ pF ˝DAopqpP q

is an isomorphism for every P P Pop.
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Take P “
À

iPZ
À

jPJi
Aej bk eiK P Pop. Then, for any l P Z, we have

AReslppF ˝DAopqpP qq – RΓmApRHomAoppP,RAqq1 el

– pelRΓmApRHomAoppP,RAqqq1

– RΓmApelRHomAoppP,RAqq1

– RΓmApRHomAoppPel, RAqq1

– RΓmA

˜

RHomAop

˜

à

jPJl

Aej , RA

¸¸1

–
à

jPJl

RΓmA pRHomAop pAej , RAqq
1

–
à

jPJl

RΓmApejRAq1 –
à

jPJl

RΓmApRAq1 ej

–
à

jPJl

Aej –
à

jPJl

AReslpP q.

This isomorphism shows that AReslppξ ˝ IdDAop qP q is an isomorphism of objects in

DpGrpAqq for every l P Z. Therefore, pξ ˝ IdDAop qP is an isomorphism in DpGrpA ´ Bqq.

Hence, ξ ˝ IdDAop is an isomorphism and ξ is also an isomorphism. □

As Corollary 3.23, we can show the following corollary.

Corollary 4.13. Let A be a noetherian connected Z-algebra and RA be a balanced dualizing

complex over A. Then, we have an isomorphism in Df pGrpAopqq

RHomApM,RAq – RΓmApMq1

for all M P Df pGrpAqq.

The following corollary is important for us.

Corollary 4.14. Let A be a noetherian connected Z-algebra and assume that A has a

balanced dualizing complex RA. Then,

(1) RA – RΓmApAq1 – RΓmAop pAq1 in DpGrpA´Aqq.

(2) A satisfies χ-condition.

(3) cdpΓmAq and cdpΓmAop q are finite.

Proof. (1) We apply Theorem 4.12 to M “ A. Then, we have

RΓmApAq1 – RHomApA,RAq – RA,

RΓmAop pAq1 – RHomAoppA,RAq – RA

in DpGrpA´Aqq. This shows (1).

(2) We only show that A satisfies right χ-condition. We can show that A satisfies left

χ-condition in the same way.

Let M P grpAq. From Corollary 4.10,

H´iDApMq “ Ext´i
A pM,RAq P grpAopq

for all i P Z. Then, from Corollary 4.13, we have

RiΓmApMq – Ext´i
A pM,RAq1 P gr1pAq.

for all i P Z. Hence, A satisfies right χ-condition from Corollary 3.29.
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(3) We only show that cdpΓmAq is finite. We can show that cdpΓmAop q is finite in the

same way.

Firstly, note that we can use the resolution RA – I in (2) of Definition 4.1 to calcu-

late DA by Remark 2.12. If i0 is the minimal integer such that Ii0 ‰ 0, then by using

Corollary 4.13,

H ipDApMqq – R´iΓmApMq “ 0

for all i ă i0 and M P grpAq. Thus, we have cdpΓmAq ď ´i0. □

4.3. Existence of balanced dualizing complexes. Finally, we show the existence of

balanced dualizing complexes, which is the first main theorem of this paper.

Theorem 4.15. Let A be a noetherian connected Z-algebra.
Then, A has a balanced dualizing complex if and only if A satisfies χ-condition,

cdpΓmAq, cdpΓmAop q are finite and RΓmApAq – RΓmAop pAq in DpGrpA´Aqq.

Proof. The ”only if” part is Corollary 4.14. We show the ”if” part. We prove that

R :“ RΓmApAq1 – RΓmAop pAq1

is a balanced dualizing complex over A. Note that R P DbpGrpA ´ Aqq because cdpΓmAq

and cdpΓmAop q are finite.

Firstly, we show that R satisfies (1) of Definition 4.1. Since A satisfies χ-condition,

from Corollary 3.29, we have

ejR
iΓmApAq – RiΓmApejAq P gr1pAq,

RiΓmAop pAqej – RiΓmAop pAejq P gr1pAopq

for all i, j P Z. This means that AResjpH ipRqq P grpAopq,ResjApH ipRqq P grpAq for all

i, j P Z.
Secondly, we show that R satisfies (2) of Definition 4.1. By Corollary 3.23, we have

RHomAp´,ResApRqq – RΓmAp´q1,

RHomAopp´,ARespRqq – RΓmAop p´q1.

Since cdpΓmAq and cdpΓmAop q are finite, the above formulas imply that ResApRq and

ARespRq have finite injective dimensions over A and Aop, respectively. Hence, from

Lemma 4.4, R satisfies (2) of Definition 4.1.

Finally, we show that R satisfies (3) of Definition 4.1. In fact, we have

RHomApR,Rq – RHomApRΓmApAq1,RΓmApAq1q

– RHomAoppRΓmApAq,RΓmApAqq pTheorem 2.17, Corollary 2.18q

– RHomAoppRΓmAop pAq,RΓmAop pAqq pRΓmApAq – RΓmAop pAqq

– RHomAoppRΓmAop pAq, Aq pProposition 3.18q

– RHomApA1,RΓmAop pAq1q pCorollary 2.18q

– RHomApA1,RΓmApAq1q pRΓmApAq – RΓmAop pAqq

– A2 pTheorem 3.22q

– A pTheorem 2.17q.

This show that ΨA in (3) of Definition 4.1 is an isomorphism. In the same way, we can

show that Ψ1
A in (3) of Definition 4.1 is also an isomorphism.
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As for the balancedness of R, it follows from Theorem 2.17, Theorem 3.22 and (3) of

Definition 4.1.

Therefore, R is a balanced dualizing complex over A. □

4.4. Examples. We give a class of Z-algebras which have balanced dualizing complexes.

We also compare the notion of balanced dualizing complexes over Z-algebras with that

over graded algebras.

The following definition is inspired by [MN25, Definition 4.15] (see also [MN24, Defini-

tion 3.1]).

Definition 4.16. Let A be a connected Z-algebra. We say that A is AS-Gorenstein of

dimension d and Gorenstein parameter l if the following conditions hold:

(1) inj¨dimGrpAq ResApAq “ inj¨dimGrpAopq ARespAq “ d,

(2) RΓmApAq1 – RΓmAop pAq1 – Ap0,´lqφrds in DpGrpA ´ Aqq for some l, d P N and

some isomorphism of Z-algebras φ : A Ñ Ap´l,´lq. φ is called a Nakayama

automorphism of A.

Proposition 4.17. Let A be a noetherian connected Z-algebra. If A is AS-Gorenstein of

dimension d and Gorenstein parameter l with a Nakayama automorphism φ, then A has

a balanced dualizing complex RA, which is isomorphic to Ap0,´lqφrds.

Proof. We prove that Ap0,´lqφrds is a balanced dualizing complex of A.

Firstly, from [MN25, Lemma 2.16]

eiAp0,´lqφ – peiAqp´lqφ

– ei`lA P grpAq,

Ap0,´lqφei – Aei´l P grpAopq.

This shows that Ap0,´lqφrds satisfies (1) of Definition 4.1.

From the condition inj¨dimGrpAq ResApAq “ inj¨dimGrpAopq ARespAq and Lemma 4.4, we

obtain an object I P DbpGrpA ´ Aqq and a quasi-isomorphism A Ñ I in DpGrpA ´ Aqq

such that ResApIiq and ARespIiq are injective over GrpAq and GrpAopq, respectively, for

all i P Z. So, Ip0,´lqφrds and Ap0,´lqφrds Ñ Ip0,´lqφrds have the same properties. This

shows that Ap0,´lqφrds satisfies (2) of Definition 4.1.

A direct calculation gives

RHomApAp0,´lqφrds, Ap0,´lqφrdsq – RHomApAp0,´lqφ, Ap0,´lqφq

– HomApAp0,´lqφ, Ap0,´lqφq

– A

in DpGrpA´Aqq. In the same way, we obtain

RHomAoppAp0,´lqφrds, Ap0,´lqφrdsq – A

in DpGrpA´Aqq. Thus, Ap0,´lqφrds satisfies (3) of Definition 4.1.

Finally, from Theorem 2.17, Theorem 3.22 and the above calculation, we have

RΓmApAp0,´lqφrdsq – RHomApAp0,´lqφrds, Ap0,´lqφrdsq1

– A1

in DpGrpA´Aqq. In the same way, we have an isomorphism RΓmAop pAp0,´lqφrdsq – A1.

Therefore, Ap0,´lqφrds is a balanced dualizing complex over A. □
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Next, we consider a graded k-algebra B “
À

iPZBi. We denote by GrpBq and GrpBopq

the categories of graded right and left B-modules, respectively, and by ΓmB and ΓmBop the

corresponding torsion functors. For other analogous notions, we use the same notation as

in the Z-algebra case.

For completeness, we include some basic properties relevant to our study, together with

their proofs, although they are likely well known to experts.

Lemma 4.18. Let B,C,D be a connected graded k-algebra. Then, the following hold:

(1) For an object M in DpGrpC ´Bqq (resp. DpGrpBqq), we have

ĞRΓmB pMq – RΓmB̄
pM̄q

in DpGrpC̄ ´ B̄qq (resp. DpGrpB̄qq). (see also [MN25, Lemma 4.12])

(2) For objects M P DpGrpC ´ Bqq and N P DpGrpD ´ Bqq (resp. DpGrpBqq), we

have
ĞRHomBpM,Nq – RHomB̄pM̄, N̄q

in DpGrpD̄ ´ C̄qq (resp. DpGrpC̄qq).

Proof. (1) We show the underived version of the claim. Letm be an element ofM and m̄ P

M̄ be the corresponding element. Let b P B be an element and b̄ P B̄ be the corresponding

element. Then, the claim follows from the fact that Ďmb “ m̄b̄. As for the derived version,

the claim follows from the isomorphism of functors Rp ¯p´q ˝ ΓmB q – ¯p´q ˝ RpΓmB q.

(2) We show the underived version of the claim. ForM P GrpC´Bq andN P GrpD´Bq,

we have

HomB̄pM̄, N̄qi,j – HomB̄pejM̄, eiN̄q

– HomBpMp´jq, Np´iqq

– HomBpM,Npj ´ iqq

– HomBpM,Nqj´i

– ĞHomBpM,Nqi,j .

In this calculation, we used the fact that ĞMp´jq “ ejM̄p´jq and ĞNp´iq “ eiN̄p´iq

([MN25, Lemma 2.17, 2.18]). If N P GrpBq, we can prove the claim in the same way.

As for the derived version, the claim follows from the isomorphism of functors RpĚp´q ˝

HomBp´,´qq – Ěp´q ˝ RpHomBp´,´qq. □

Proposition 4.19. Let B be a noetherian connected graded k-algebra. Then, B has a

balanced dualizing complex in the sense of [Yek92, Definition 3.3 and 4.1] if and only if B̄

has a balanced dualizing complex. Moreover, in this case, we have RB̄ – ĎRB.

Proof. Let M̄ P GrpB̄q. Then, from (2) of Lemma 4.18 and the fact k̄ – K, we have

ExtiB̄pK, M̄q –
ĞExtiBpk,Mq P GrpB̄q.

This shows that B̄ satisfies right χ-condition in the sense of [Yek20, Definition 16.5.14]

(see also [AZ94, Definition 3.2 and 3.7, Proposition 3.11]) if and only if B satisfies right

χ-condition. In the same way, we can show that B̄ satisfies left χ-condition if and only if

B satisfies left χ-condition.

As for cdpΓmB̄
q, from (1) of Lemma 4.18, we have

RiΓmB̄
pM̄q – ĞRiΓmB pMq P GrpB̄q.
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This shows that cdpΓmB̄
q is finite if and only if cdpΓmB q is finite. In the same way, we can

show that cdpΓm ¯Bop q is finite if and only if cdpΓmBop q is finite.

Therefore, from Theorem 4.15 and [VdB97, Theorem 6.3], we conclude that B̄ has a

balanced dualizing complex if and only if B has a balanced dualizing complex. Moreover,

we obtain RB̄ – ĎRB from the above discussion. □

We can also compare the notion of AS-Gorenstein Z-algebras with that of AS-Gorenstein

graded algebras. As for the case of AS-regular algebras, see [MN25, Section 4].

Proposition 4.20. Let B be a noetherian connected graded k-algebra. Then, B is AS-

Gorenstein of dimension d and Gorenstein parameter l in the sense of [Yek20, Definition

15.4.8] if and only if B̄ is AS-Gorenstein of dimension d and Gorenstein parameter l.

Proof. Firstly, note that B̄ has the injective dimension d over B̄ and B̄op if and only if B

has the injective dimension d over B and Bop from Lemma 2.3.

Assume that B is AS-Gorenstein of dimension d and Gorenstein parameter l. Then,

there is an isomorphism ν : B Ñ B such that

RB – RΓmB pBq1 – RΓmBop pBq1 – Bp´lqνrds

(for example, see [Yek20, Corollary 17.3.14]). Since B̄ is 1-periodic, we have the canonical

isomorphism of Z-algebras ψ1 : B̄ Ñ B̄p´l,´lq. Thus, from Lemma 4.18, we have

RΓmB̄
pB̄q1 – RΓmB̄op pB̄q1 » B̄p0,´lqψ1˝ν̄rds.

Hence, B̄ is AS-Gorenstein of dimension d and Gorenstein parameter l.

Assume that B̄ is AS-Gorenstein of dimension d and Gorenstein parameter l. Then, in

DpGrpB ´Bqq,

ĞRHomBpk,Bq – RHomB̄pK, B̄q pLemma 4.18q

– RHomB̄pK,RΓmB̄
pB̄q1p0, lqψ2˝ν̄´1r´dsq

– RHomB̄pK,RΓmB̄
pB̄q1qp0, lqψ2˝ν̄´1r´ds

– RΓmB̄
pKq1p0, lqψ2˝ν̄´1r´ds pTheorem 3.22q

– Kp0, lqψ2˝ν̄´1r´ds pProposition 3.18q,

where ψ2 : B Ñ Bpl, lq is the canonical isomorphism of Z-algebras. Moreover, we have

e0 ĞRHomBpk,Bq – RHomBpk,Bq,

e0Kp0, lqψ2˝ν´1r´ds – kplqψ2˝ν´1r´ds.

Thus, we obtain

RHomBpk,Bq – kplqr´ds P DpGrpkqq.

In the same way, we can obtain

RHomBoppk,Bq – kplqr´ds P DpGrpkqq.

Therefore, B is AS-Gorenstein of dimension d and Gorenstein parameter l. □

5. An application to noncommutative projective geometry

In this section, we give an application of Theorem 4.15 to noncommutative projective

geometry. Especially, we show that the noncommutative projective scheme over a Z-
algebra has a Serre functor when it has a balanced dualizing complex and its global

dimension is finite.
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5.1. Noncommutative projective schemes. Let A be a right noetherian connected

Z-algebra. Then, the category grpAq is an abelian category and the subcategory torpAq

of torsion graded right A-modules is a Serre subcategory of grpAq ([MN25, Lemma 2.9,

Lemma 3.7]). Thus, we can consider the quotient category qgrpAq “ grpAq{ torpAq. We

denote by πA : grpAq ÝÑ qgrpAq the natural projection functor. Note that πA has a right

adjoint functor ωA : qgrpAq ÝÑ grpAq ([MN25, Section 3.1]) and πA ˝ ωA – IdqgrpAq. In

particular, ω is fully faithful ([Stacks, Lemma 4.24.4]).

We can also define the quotient category QGrpAq “ GrpAq{TorpAq in the same way. In

addition, we denote by πA the natural projection functor and by ωA : QGrpAq ÝÑ GrpAq

its right adjoint functor.

Definition 5.1 (cf. [AZ94, Section 2], [MN25, Definition 3.8]). Let A be a right noetherian

connected Z-algebra. Then, the noncommutative projective scheme associated to A is

defined to be the category qgrpAq.

5.2. Serre functors of noncommutative projective schemes over Z-algebras.

Definition 5.2. Let T be a k-linear triangulated category. A Serre functor of T is an

autoequivalence ST of T such that there exists a natural isomorphism

HomT pX,Y q – HomT pY,ST pXqq1

for all X,Y P T , where p´q1 denotes the k-dual.

Definition 5.3. Let C be an abelian category. Assume that ExtipX,Y q is defined for all

X,Y P C and i P N. The global dimension gl¨dimpCq of C is defined to be

gl¨dimpCq “ supti P N | ExtiCpX,Y q ‰ 0 for some X,Y P Cu.

We often use the following lemma in the proof of Theorem 5.8. We can prove this

lemma in the same way as [DNVB04, Lemma A.1].

Lemma 5.4. For any πApMq P DbpqgrpAqq, there exists an object P P DbpgrpAqq such that

P i is projective for all i P Z and πApMq ‘πApNq – πApP q for some πApNq P DbpqgrpAqq.

We define a functor

QA : grpAq Ñ grpAq por GrpAq Ñ GrpAqq

by QA “ ωA ˝ πA. Note that as in the functor ΓmA , we can extend the functor QA on the

category of bimodules (cf. [MN25, Lemma 3.13]). Moreover, RiQA commutes with direct

limits for any i from Proposition 3.5 and [MN25, Lemma 3.12].

We also need the following proposition (cf. [MN25, Theorem 6.6]).

Proposition 5.5. Let A be a right noetherian connected Z-algebra. Let M be an ob-

ject in Db
lf pGrpAqq with the property that M has finite projective dimension, where

Db
lf pGrpAqq :“ DbpGrpAqq X Dlf pGrpAqq. Let N be an object in D´

f pGrpAqq, where

D´
f pGrpAqq :“ D´pGrpAqq X Df pGrpAqq. We assume that cdpΓmAq is finite. Then, we

have the following isomorphism

RHomApN,M bL
ARQApAq1q – RHomApM,RQApNqq1.

To prove Proposition 5.5, we need some lemmas below (cf. [MN25, Proposition 3.27,

Lemma 3.29], [Jør98, Proposition 2.1], [Yek20, Theorem 15.3.27]).
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Lemma 5.6. Let A be a right Ext-finite connected Z-algebra. Assume that cdpΓmAq is

finite. Then, we have the following isomorphism

RHomApN,RQApAq1q – RQApNq1

for all N P DpGrpAqq.

Proof. RiQA commutes any direct limit as above. From [MN25, Lemma 3.12], cdpQAq is

finite. By using the same argument as in Section 3.3, we obtain the desired isomorphism.

□

Lemma 5.7. Let A be a right noetherian Z-algebra. Let M be an object in DbpGrpAqq

with the property thatM has finite projective dimension. Let N be an object in D´
f pGrpAqq

and L be an object P D`pGrpA´Aqq.

Then, we have the following isomorphism

RHomApN,M bL
ALq – M bL

ARHomApN,Lq.

Proof. From the assumption,M is quasi-isomorphic to a bounded complex P of projective

graded right A-modules (cf. [Stacks, Lemma 15.69.2], projective version of [Har66, Propo-

sition 7.6] or the proof of Lemma 4.4). In addition, N is quasi-isomorphic to a bounded

above complex F of finite free graded right A-modules (cf. [Yek20, Proposition 7.4.9]).

Thus, we obtain

RHomApN,M bL
ALq – HomApF, P bALq,

M bL
ARHomApN,Lq – P bAHomApF,Lq.

We assume that F i “ 0 for all i ą i0, P
i “ 0 for all i ă i1, i2 ă i and Li “ 0 for all i ă i3.

Then, for any n P Z, we have

Homn
ApF, P bALq “

ź

pPZ
HomApF p, pP bALqn`pq

–
ź

pďi0

HomA

˜

F p,
à

i1ďqďi2

P q bAL
p´q`n

¸

pboundedness of F, P q

–

i0
à

p“i1`i3´n

HomA

˜

F p,
à

i1ďqďi2

P q bAL
p´q`n

¸

pboundedness of Lq

–

i0
à

p“i1`i3´n

à

i1ďqďi2

HomA

`

F p, P q bAL
p´q`n

˘

.

Moreover,

pP bAHomApF,Lqqn “
à

q`r“n

P q bAHomA
rpF,Lq

–
à

q`r“n

P q bA

ź

pPZ
HomApF p, Lp`rq

–
à

i1ďqďi2

P q bA

ź

pďi0

HomApF p, Lp´q`nq pboundedness of F, P q

–
à

i1ďqďi2

P q bA

i0
à

p“q`i3´n

HomApF p, Lp´q`nq pboundedness of Lq

–
à

i1ďqďi2

i0
à

p“q`i3´n

P q bAHomApF p, Lp´q`nq.
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We can easily check that

HomA

`

F p, P q bAL
p´q`n

˘

– P q bAHomApF p, Lp´q`nq

since F p is a finite free graded right A-module. Thus, we obtain HomA
npF, P bALq –

pP bAHomApF,Lqqn for all n P Z. This shows the desired isomorphism. □

Proof of Proposition 5.5. As in the proof of Lemma 5.6, cdpQAq is finite. This means that

RQApAq1 P DbpGrpA´Aqq. Thus, we have

RHomApN,M bL
ARQApAq1q – M bL

ARHomApN,RQApAq1q pLemma 5.7q

– M bL
ARQApNq1 pLemma 5.6q

– pM bL
ARQApNq1q2 pTheorem 2.17q

– RHomApM,RQApNq2q1 pLemma 3.21q

– RHomApM,RQApNqq1 pTheorem 2.17q.

Note that RQApNq is locally finite, hence M bL
ARQApNq1 is also locally finite. Moreover,

for the fourth isomorphism, we use the same technique as in the proof of Corollary 3.23

in order to apply Lemma 3.21. □

The following theorem is the second main result in this paper (cf. [DNVB04, Appendix

A], [MN25, Theorem 6.8]).

Theorem 5.8. Let A be a noetherian connected Z-algebra. Assume that A has a balanced

dualizing complex RA and gl¨dimpqgrpAqq is finite. Then, the category DbpqgrpAqq has a

Serre functor SqgrpAq which is given by the following formula:

SqgrpAqpπApMqq “ πApM bL
ARAqr´1s.

Proof. We follow the strategy in the proof of [DNVB04, Appendix A]. The proof is divided

into three steps.

Step 0: Define the functor

F : DbpqgrpAqq ÝÑ DbpqgrpAqq

by F pπApMqq “ πApM bL
ARAq for all πApMq P DbpqgrpAqq.

We need to check that the functor F is well-defined, i.e. if πApMq P DbpqgrpAqq, then

F pπApMqq is also in DbpqgrpAqq. To see this, we take P,N as in Lemma 5.4. Then, we

have

πApP bL
ARAq – F pπApMqq ‘ F pπApNqq.

Since P i is projective for all i P Z, we have P bL
ARA – P bARA P DbpgrpAqq. Hence,

F pπApMqq is also in DbpqgrpAqq.

Step 1: In this step, we show that the functor F is an autoequivalence of DbpqgrpAqq.

Define the functor

G : DbpqgrpAqq ÝÑ DbpqgrpAqq

by GpπApMqq “ πApRHomApRA,Mqq for all πApMq P DbpqgrpAqq. We show that G is a

quasi-inverse of F . Before showing this, we need to check that the functor G is well-defined.
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Let πApMq P DbpqgrpAqq. Then,

GpπApMqq – πApRHomApRA,Mqq

– πApRHomAoppDApMq, DApRAqqq pProposition 4.8q

– πApRHomAoppDApMq, Aqq pDefinition 4.1q.

By using Aop-version of Lemma 5.4, we take Q,L P DbpgrpAopqq such that Qi is projective

for all i P Z and πApDApMqq ‘ πApLq – πApQq. Then, we have

πApRHomAoppQ,Aqq – GpπApMqq ‘ πApRHomAoppL,Aqq.

Since Qi is projective for all i P Z, we also have

RHomAoppQ,Aq – HomApQ,Aq P DbpgrpAqq.

Hence, GpπApMqq is in DbpqgrpAqq.

Next, we show that F ˝ G – IdDbpqgrpAqq. Take any πApMq P DbpqgrpAqq. In fact, the

claim follows from the following isomorphisms:

F pGpπApMqqq – πApRHomApRA,Mq bL
ARAq

– πApRHomAoppDApMq, Aq bL
ARAq

– πApRHomAoppDApMq, RAqq

– πAppDAop ˝DAqpMqq

– πApMq pProposition 4.8q.

In addtion, we show that G ˝F – IdDbpqgrpAqq. As for this, we have a natural morphism

η : IdDbpqgrpAqq Ñ G ˝ F . Both IdDbpqgrpAqq and G ˝ F are way-out on both directions.

Thus, from Lemma 4.7, it suffices to show that η is an isomorphism for the set of objects

Q :“

#

à

iPI

πApeiAq

ˇ

ˇ

ˇ

ˇ

ˇ

I : a finite set of integers that may contain duplicates

+

.

Take any πApP q “
À

iPI πApeiAq P Q. Then, we have

pG ˝ F qpπApP qq – πApRHomApRA, P bL
ARAqq

– πA

˜

RHomA

˜

RA,
à

iPI

eiAbARA

¸¸

–
à

iPI

πApRHomApRA, eiAbARAqq

–
à

iPI

πARHomApRA, eiRAq

–
à

iPI

πApeiRHomApRA, RAqq

–
à

iPI

πApeiAq – πApP q.

Therefore, F is an autoequivalence of DbpqgrpAqq.

Step 2: We show that there exists a natural isomorphism

HomDbpqgrpAqqpX,Y q – HomDbpqgrpAqqpY, F pXqr´1sq1

for all X,Y P DbpqgrpAqq.
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Take any πApMq, πApNq P DbpqgrpAqq. We assume that M has finite projective dimen-

sion. By adjunction,

HomApM,RQApNqq – HomDbpqgrpAqqpπApMq, πApNqq.

On the other hand, a triangle from [MN25, Lemma 3.14]

RΓmApAq Ñ A Ñ RQApAq

induces a triangle

M bL
ARAr´1s – M bL

ARΓmApAq1r´1s Ñ M bL
ARQApAq1 Ñ M bL

AA
1

in DpGrpA ´ Aqq. Because πApM bL
AA

1q “ 0 from the fact that A1 is torsion and M P

DbpgrpAqq has finite projective dimension, we have an isomorphism

πApM bL
ARAqr´1s – πApM bL

ARQApAq1q.

Moreover, we can obtain the isomorphism

HomApN,M bL
ARQApAq1q – HomqgrpAqpπApNq, πApM bL

ARQApAq1qq.

Actually, by Proposition 3.3 and [MN25, Lemma 3.12],

RQApM bL
ARQApAq1q “ lim

ÝÑ
nÑ8

RHomApAěn,M bL
ARQApAq1q.

Then, we have

RQApM bL
ARQApAq1q – lim

ÝÑ
nÑ8

RHomApAěn,M bL
ARQApAq1q

– lim
ÝÑ
nÑ8

à

iPZ
RHomApeiAěn,M bL

ARQApAq1q

– lim
ÝÑ
nÑ8

à

iPZ
RHomApM,RQApeiAěnqq1 pProposition 5.5q

– lim
ÝÑ
nÑ8

à

iPZ
RHomApM,RQApeiAqq1 pRQApeiAěnq – RQApeiAqq

– lim
ÝÑ
nÑ8

à

iPZ
RHomApeiA,M bL

ARQApAq1q pLemma 3.21q

– lim
ÝÑ
nÑ8

M bL
ARQApAq1

– M bL
ARQApAq1.

From adjunction,

HomApN,M bL
ARQApAq1q – HomApN,RQApM bL

ARQApAq1qq

– HomDbpqgrpAqqpπApNq, πApM bL
ARQApAq1qq.

Hence, we obtain

HomApN,M bL
ARQApAq1q – HomDbpqgrpAqqpπApNq, F pπApMqqr´1sq.

Finally, by using Proposition 5.5, it follows that

HomDbpqgrpAqqpπApMq, πApNqq – HomDbpqgrpAqqpπApNq, F pπApMqqr´1sq1.
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For a general πApMq P DbpqgrpAqq, we can take P,L as in Lemma 5.4. Then, we have

HomDbpqgrpAqqpπApMq, πApNqq ‘ HomDbpqgrpAqqpπApLq, πApNqq

– HomDbpqgrpAqqpπApMq ‘ πApLq, πApNqq

– HomDbpqgrpAqqpπApNq, F pπApMq ‘ πApLqqr´1sq1

– HomDbpqgrpAqqpπApNq, F pπApMqqr´1sq1 ‘ HomDbpqgrpAqqpπApNq, F pπApLqqr´1sq1.

Thus, the desired isomorphism holds for πApMq P DbpqgrpAqq.

Hence, F r´1s is a Serre functor of DbpqgrpAqq from Step 0, Step 1 and Step 2. □

Remark 5.9. As a final note, we explain why πApM bL
ARAqr´1s and

πApRQApMq bL
ARAqr´1s are isomorphic in DpqgrpAqq. The former appears in

Theorem 5.8, while the latter appears in Theorem 1.2.

Indeed, there is a canonical triangle in DpGrpAqq ([MN25, Lemma 3.12])

RΓmApMq Ñ M Ñ RQApMq.

Tensoring with RA and applying πA, we obtain

πApRΓmApMq bL
ARAq Ñ πApM bL

ARAq Ñ πApRQApMq bL
ARAq.

Since πApRΓmApMq bL
ARAq “ 0, the desired isomorphism follows.
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